- Cho x,y x 9,9 = xx,yy
Hãy tìm chữ số thích hợp thay chõ và y để đợc phép tính đúng với x và ý khác nhau và khác 0
Mong các bạn giúp mình. Mình đang cần gấp :v Cảm ơn ạ ~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(10).(x,y).(10).(9,9)=100.(xx,yy)
(xy).(99)=(xxyy)
(10x+y).(99)=1000x+100x+10y+y
99x+99y=1100+11y
88y=110x
(88:22).y=(110:22)x
4. y=5 .x <=> y=5 ; x=4
a, \(\overline{ab,b}\) - \(\overline{c,c}\) = \(\overline{0,a}\)
(\(\overline{ab,b}\) - \(\overline{c,c}\)) \(\times\)10 = \(\overline{0,a}\)
\(\overline{abb}\) - \(cc\) = \(a\)
\(a\times\)100 + \(b\)\(\times\)11 - \(c\times\)11 = \(a\)
\(a\times\)100 + \(b\times\)11 - \(c\times\)11 - \(a\) = 0
\(a\times\)99 + \(b\) \(\times\)11 - \(c\times\) 11 = 0
11\(\times\)(\(a\times\)9 + \(b\) - \(c\)) = 0
\(a\times\) 9 + \(b\) - \(c\) = 0
\(a\times\) 9 = \(c-b\) ⇒ \(c-b\)⋮9 ⇒ \(c\) = \(b\) ; \(c\) - \(b\) = 9;
th: \(c\) = \(b\) ⇒ \(a\times\)9 = 0 ⇒ \(a\) = 0 (loại)
th: \(c-b=9\) ⇒ \(c=9+b\) ⇒ \(b\) = 0; \(c\) = 9
\(a\times\) 9 = 9 - 0 = 9 ⇒ \(a\) = 1
Vậy thay \(a=1;b=0;c=9\) vào biểu thức: \(\overline{ab,b}-\overline{c,c}=\overline{o,a}\) ta được:
10,0 -9,9 = 0,1
b, \(\overline{b,a}\) - \(\overline{a,b}\) = 2,7
(\(\overline{b,a}\) - \(\overline{a,b}\))\(\times\)10 = 2,7 \(\times\) 10
\(\overline{ba}\) - \(\overline{ab}\) = 27
\(b\times10+a-a\times10-b\) = 27
(\(b\times10\) - \(b\)) - (\(a\) \(\times\) 10 - \(a\)) = 27
(\(b\times10-b\times1\)) - (\(a\times\)10 - \(a\)\(\times\)1) = 27
\(b\)\(\times\)(10 -1) - \(a\) \(\times\)( 10 - 1) =27
\(b\times\) 9 - \(a\times9\) = 27
9\(\times\) (\(b-a\)) = 27
\(b-a\) = 27 : 9
\(b-a\) = 3 ⇒ \(b\) = 3 + \(a\) ≤ 9 ⇒ \(a\) ≤ 9 - 3 = 6
Lập bảng ta có:
\(a\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
\(b\) = \(a+3\) | 3 | 4 | 5 | 6 | 7 | 8 |
9 |
Thay các giá trị của \(a;b\) lần lượt vào biểu thức \(\overline{b,a}-\overline{a,b}\) = 2,7 ta có:
3,0 - 0,3 = 2,7
4,1 - 1,4 = 2,7
5,2 - 2,5 = 2.7
6,3 - 3,6 = 2,7
8,5 - 5,8 = 2,7
9,6 - 6,9 = 2,7
\(\overline{9xy4}\)\(⋮\)\(2\)\(\Leftrightarrow x,y\in\left\{0;1;2;...;9\right\}\)
\(\overline{9xy4}\)\(⋮\)\(4\)\(\Leftrightarrow x\in\left\{0;1;2;...;9\right\}\)
\(y\in\left\{0;2;4;6;8\right\}\)
\(\overline{9xy4}\)\(⋮\)\(8\)\(\Leftrightarrow\)hoặc \(x\in\left\{0;2;4;6;8\right\}\)và \(y\in\left\{2;6\right\}\)
hoặc \(x\in\left\{1;3;5;7;9\right\}\)và \(y\in\left\{0;4;8\right\}\)
- Ta có: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Leftrightarrow x^2+y^2+2xy=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
- CMT2: \(y^2+z^2-x^2=-2yz\)
\(z^2+x^2-y^2=-2zx\)
- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P
- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)
\(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)
- Đặt \(a=x^3+y^3+z^3\)
- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)
\(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)
- Mặt khác: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a
- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)
- Thay \(a=3xyz\)vào đa thức P
- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)
Vậy \(P=-\frac{3}{2}\)
vì 5x1y: chia hết 2 và chia 5 dư 4 => y=4
với y=4 thì 5x14 : 3=> x=2;8
vậy : y=4
x=2;8
Muốn chia 5 dư 4 mà chia hết cho 2 thì y sẽ phải là 4
Ta thấy:5+1+4=10
10 phải cộng thêm 2 thành 12 thì chia hết cho 3.
Vậy A=5214
Trình bày rõ ràng giúp mình nha!
Lưu ý : a,b,c,m,n khác nhau và khác 2!
Trước hết ta thấy rằng nếu có một trong hai số x,y chẵn thì xy chẵn còn 2x+2y+1 là lẻ, do đó 2x+2y+1 không thể chia hết cho xy.
\(\overline{x,y}\times9,9=\overline{x,y}\times\left(10-0,1\right)=\overline{xy}-\overline{0,xy}\)
\(\Rightarrow\overline{xy}-\overline{0,xy}=\overline{xx,yy}\)
Suy ra \(1-\overline{0,xy}=\overline{0,yy}\Leftrightarrow\overline{xy}+\overline{yy}=100\)
\(\Rightarrow\orbr{\begin{cases}y=5\\y=0\end{cases}}\)(vì xét chữ số tận cùng tổng 2 lần \(y\)có tận cùng là \(0\))
Suy ra \(y=5\)(do \(y\ne0\))
Với \(y=5\)thế ngược lên trên ta ra \(x=4\).
Thử lại thỏa mãn.