K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

Dùng tính chất tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+b+c}{b+d+f}\)   ( có b + d + f \(\ne\)0 )

* Trước tiên ta xét trường hợp x + y + z = 0 có :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=0\) \(\Rightarrow x=y=z=0\)

* Xét x + y + z = 0 , tính chất tỉ lệ thức :

\(x+y+z=\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2x+2y+2z}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2}\)Và \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)

                                           \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\)

                                            \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=\frac{-1}{2}\)

Vậy có cặp \(\left(x,y,z\right)\) thỏa mãn: \(\left(\frac{1}{2},\frac{1}{2},\frac{-1}{2}\right)\)

19 tháng 6 2023

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

19 tháng 6 2023

avt ảnh bạn à, vừa handsome vừa học giỏi nx -.-

TH1:x+y+z=0 \(\Rightarrow x=y=z=0\)

TH2:x+y+z\(\ne0\)

Áp dụng t/c .............

Được x+y+z=1/2

Biến đổi ta được \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)

24 tháng 5 2016

xin lỗi mk ấn nhầm

  Dựa vào tính chất của dãy tỉ số bằng nhau ta có   2=1/ x+y+z => x+y+z= 1/2

 Thay vào ta có   y+z+2=2x và y+z=1/2-x

                      => 1/2-x+2=2x => 5/2-x=2x   => 3x=5/2

                      => x=5/6

 Tương tự tìm y và z

  

24 tháng 5 2016

\(\frac{\left(y+z+2\right)+\left(x+z+3\right)+\left(x+y-5\right)}{x+y+z}=\frac{1}{x+y+z}\)

\(\frac{y+y+z+z+2+3-5+x+x}{x+y+z}=\frac{2y+2z+0+2x}{x+y+z}\)

\(\frac{2+2+2+y.z.x}{x+y+z}=\frac{6+yzx}{x+y+z}\)

12 tháng 11 2016

xin lỗi, chỉ có 1 trg hợp thôi

 

13 tháng 11 2016

hình như bạn chép sai đề thì phải

6 tháng 2 2016

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x}{z}+\frac{y}{x}+\frac{z}{y}\)

<=>x2z+y2x+z2y=x2y+y2z+z2x

<=>(x2z-x2y)+(y2x-z2x)+(z2y-y2z)=0

<=>x2.(z-y)-x.(z-y)(z+y)+yz.(z-y)=0

<=>(z-y)(x2-xz-xy+yz)=0

<=>(z-y)(x-z)(x-y)=0

<=>x=y=z

Mà x+y+z=3

=>x=y=z=1

6 tháng 2 2016

Có thể   \(x=y=z=1\)

15 tháng 8 2018

Áp dụng tính chất dãy tỉ số bằng nhau thì có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\frac{y+z-x}{x}=1\Rightarrow y+z-x=x\Leftrightarrow y+z=2x\)(1)

Tương tự: \(z+x=2y;\)(2)   \(x+y=2z\)(3)

Đặt \(S=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(S=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\). Thay (1); (2) và (3) vào S có:

\(S=\frac{2x.2y.2z}{xyz}=8\). ĐS: ...