K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4
456
CTVHS
12 tháng 11

\(B=5+5^2+5^3+...+5^{89}+5^{90}\)

\(B=\left(5+5^2+5^3+5^4\right)+...+\left(5^{87}+5^{88}+5^{89}+5^{90}\right)\)

\(B=5.\left(1+5+25+125\right)+...+5^{87}.\left(1+5+25+125\right)\)

\(B=5.156+...+5^{87}.156\)

\(B=\left(5+...+5^{87}\right).156\)

Mà \(156⋮26\) nên

\(\Rightarrow\left(5+...+5^{87}\right).156⋮26\) (hay \(B⋮26\))

\(\Rightarrow B⋮26\left(đpcm\right)\)

1 tháng 11 2016

Cho 2 số nguyên bình phương đó lần lượt là a2, b2. Vì tổng 2 số trên chia hết cho 7 nên 2 số đó chia hết cho 7. Vì trong phép nhân chỉ cần có một số chia hết cho d (d thuộc N) thì phép nhân đó chia hết cho d. Vậy a2 = a . a nên a chia hết cho 7, b2 = b . b nên b chia hết cho 7.

- Vậy 2 số nguyên tố đó chia hết cho 7.

2 tháng 11 2016

theo tôi ko phải thế

18 tháng 12 2016
a, Vì hai số tự nhiên liên tiếp chắc chắn sẽ có một số chẵn và một số lẻ mà số lẻ nhân với số chẵn sẽ được một số chia hết cho 2 => Tích của hai số tự nhiên liên tiếp chia hết cho 2(ĐPCM) b, gọi 3 số tự nhiên liên tiếp là a , a+1, a+2 .Ta có a.(a+1).(a+2) chia hết cho 3 => 3a ( 1+2+3 ) chia hết cho 3 => 3a . 6 chia hết cho 3 Vì 3a chia hết cho 3 6 chia hết cho 3 nên 3a + 6 chia hết cho 3 Vậy tích 3 số tự nhiên liên tiếp chia hết cho 3(ĐPCM) ĐPCM là điều phải chứng minh nhé! Chúc bạn học tốt ^_^
15 tháng 10 2021

a) Gọi 2 số tự nhiên liên tiếp là a; a + 1

Ta có:

\(a.\left(a+1\right)\)

\(=a.a+a\)

\(2a+a\)

\(\Rightarrow a.\left(a+1\right)⋮2\)

Vậy tích của 2 số tự nhiên liên tiếp chia hết cho 2

b) Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2

Ta có

\(a.\left(a+1\right).\left(a+2\right)\)

\(=\left(2a+a\right).\left(a+2\right)\)

\(=3a+\left(a+2\right)\)

\(~HT~\)

30 tháng 6 2018

A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )

    Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )

Ta có : ( 7A + N ) : 7 ( dư N )

           ( 7B + N ) : 7 ( dư N )

=> ( 7A + N ) - ( 7B + N ) 

=  7A - 7B

= 7 . ( A - B ) chia hết cho 7

Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .

B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2

    Gọi 2 số đó là 3k+1 và 3h+2 

Ta có : 3k+1 : 3 ( dư 1 )

            3h+2 : 3 ( dư 2 )

=> ( 3k+1 ) + ( 3h+2 )

= 3k+ 3h + 3

= 3 . ( k + h + 1 )

Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3

Đọc thì nhớ tk nhá

18 tháng 5 2017

ừ... trả lời đi

18 tháng 5 2017

bạn giải đi