K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có \(\widehat{BAC}\) là góc nội tiếp chắn cung BC

nên \(\widehat{BAC}=\dfrac{\widehat{BOC}}{2}=\dfrac{110^0}{2}=55^0\)

ΔBAC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-55^0}{2}=\dfrac{125^0}{2}=62,5^0\)

7 tháng 4 2017

ahihi

5 tháng 7 2016

A B C H 20 5 12 6 I

Hình như yêu cầu của đề bài sai.

12 tháng 7 2016

uk sai thật

bài đâu mak khó thế

14 tháng 8 2016
Nếu chỉ cho góc thì có vô số r nhé
NV
23 tháng 7 2021

Do \(\widehat{AOB}\) là góc ở tâm chắn cung AB và \(\widehat{ACB}\) là góc nội tiếp chắn cung AB

\(\Rightarrow\widehat{AOB}=2\widehat{ACB}=90^0\)

\(\Rightarrow\Delta OAB\) vuông cân tại O

Áp dụng định lý Pitago:

\(OA^2+OB^2=AB^2\)

\(\Leftrightarrow R^2+R^2=a^2\)

\(\Rightarrow R^2=\dfrac{a^2}{2}\Rightarrow R=\dfrac{a\sqrt{2}}{2}\)

\(R=\dfrac{a\sqrt{2}}{2}\)(đvđd)