chứng minh rằng A=2+22+23+...+22024 chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=1+2+2^2+...+2^{2023}\)
=>\(2A=2+2^2+2^3+...+2^{2024}\)
=>\(2A-A=2^{2024}+2^{2023}+...+2^2+2-2^{2023}-2^{2022}-...-2^2-2-1\)
=>\(A=2^{2024}-1\)
b: \(A=\left(1+2\right)+2^2+2^3+...+2^{2023}\)
\(=3+2^2\left(1+2\right)+...+2^{2022}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{2022}\right)⋮3\)
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
a) \(A=2\left(1+2+2^2+...+2^{2022}+2^{2023}\right)⋮2\left(đpcm\right)\)
b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2023}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{2023}.3\)
\(=3\left(2+2^3+...+2^{2023}\right)⋮3\left(đpcm\right)\)
A) A=2+22+23+...+22023+22024
A=2(1+2+22+...+22022+22023)⋮2
B) A=2+22+23+...+22023+22024
A=(2+22)+...+(22023+22024)
A=2(1+2)+...+22023(1+2)
A=2.3+...+22023.3
A=3(2+...+22023)⋮3
a) \(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(A=2\cdot\left(1+3\right)+2^3\cdot\left(1+3\right)+...+2^{59}\cdot\left(1+3\right)\)
\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)
Vậy A chia hết cho 3
________
\(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)
\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)
Vậy A chia hết cho 5
a) A chia hết cho 2 vì tất cả các số hạng của tổng đều chia hết cho 2.
b) Ta tách ghép các số hạng của A thành các nhóm sao cho mỗi nhóm xuất hiện thừa số chia hết cho 3. Khi đó:
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 7. Bước 2. Áp dụng tính chất chia hết của một tích. |
Ta có: A = 2 + 2 2 + 2 3 + … + 2 60 = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + … + 2 58 + 2 59 + 2 60 = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2 = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2 = 2 + 2 4 + … + 2 58 .7 ⇒ A ⋮ 7 |
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)
Ai giúp tui vs
A = 2 + 22 + 23 + .. + 22024
A = 21 + 22 + 23 + ... + 22024
Xét dãy số 1; 2; 3; ...; 2024, đây là dãy số cách đều với khoảng cách là: 2 - 1= 1
Số số hạng của dãy số là: (2024 - 1) : 1+ 1 = 2024
Vì 2024 : 4 = 506
Vậy nhóm 4 số hạng liên tiếp của A vào nhau ta được:
A = (2 + 22 + 23 + 24) + .. + (22021+ 22022 + 22023 + 22024)
A = (2 + 22 + 23 + 24) + ... + 22020.(2 + 22 + 23 + 24)
A = (2 + 22 + 23 + 24).(20 + ... + 22020)
A = (2+ 4 +8+ 16).(20 + ... + 22020)
A = 30.(20 + ...+ 22020) = 10.3.(20+ ...+ 22020) ⋮ 10 (đpcm)