K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A và ΔABC vuông tại A có

AB chung

AD=AC

Do đó: ΔABD=ΔABC

b: ΔABD=ΔABC

=>BD=BC

ΔABD=ΔABC

=>\(\widehat{ABD}=\widehat{ABC}\)

=>\(\widehat{MBC}=\widehat{MBD}\)

Xét ΔMBC và ΔMBD có

MB chung

\(\widehat{MBC}=\widehat{MBD}\)

BC=BD

Do đó: ΔMBC=ΔMBD

loading...

a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: AH=3*4/5=2,4cm

c: ΔABC vuông tại A có HA là đường cao

nên AB^2=BH*BC

a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có

góc A chung

=>ΔAIB đồng dạng với ΔAEC

=>AI/AE=AB/AC

=>AI/AB=AE/AC

b: Xét ΔAIE và ΔABC có

AI/AB=AE/AC
góc A chung

=>ΔAIE đồg dạng với ΔABC

7 tháng 3 2022

undefined

đa tạ huynh đệ eoeo

11 tháng 3 2022

a) Xét \(\Delta ABE\) và \(\Delta ACF:\)

\(\widehat{A}chung.\\ \widehat{AEB}=\widehat{AFC}\left(=90^o\right).\\ \Rightarrow\Delta ABE\sim\Delta ACF\left(g-g\right).\)

b) Xét \(\Delta AEF\) và \(\Delta ABC:\)

\(\widehat{A}chung.\\ \dfrac{AE}{AB}=\dfrac{AF}{AC}\left(\Delta ABE\sim\Delta ACF\right).\\ \Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right).\)

11 tháng 3 2022

TK

https://hoc24.vn/cau-hoi/bai-1-cho-d-abc-cac-duong-cao-be-va-cf-cat-nhau-tai-ha-chung-minh-tam-giac-abe-dong-dang-voi-tam-giac-afcb-chung-minh-tam-giac-aef-dong-dang-voi.5075521880097

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

b: XétΔABC vuông tại A có AH là đường cao

nên \(AH^2=BH\cdot CH\)

c: Vì \(AH^2=BH\cdot CH=4\cdot16=64\left(cm\right)\)

nên AH=8cm

Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE=8(cm)

27 tháng 1 2022

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^BHA = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

b, Xét tam giác ABH và tam giác CAH ta có : 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAC ) 

Vậy tam giác ABH~ tam giác CAH (g.g )

=> AH/CH=BH/AH => AH^2 = CH.BH 

c, Ta có : AH = 2 . 4 = 8 cm 

Xét tứ giác ADHE có : 

^A = ^ADH = ^AEH = 900 

Vậy tứ giác ADHE là hcn 

=> AH = DE = 8 cm 

d, Ta có : \(\dfrac{S_{AMH}}{S_{ABC}}=\left(\dfrac{AH}{AC}\right)^2\)

Xét tam giác AHC và tam giác ABC 

^AHC = ^BAC = 900

^HAC = ^B ( cùng phụ ^BAM ) 

Vậy tam giác AHC ~ tam giác BAC ( g.g)

=> AC / BC = HC/AC => AC^2 = HC ( HB + HC ) 

=> AC = 4 . 5 = 20 cm 

Thay vào ta được : \(\left(\dfrac{AH}{AC}\right)^2=\left(\dfrac{8}{20}\right)^2=\dfrac{64}{400}=\dfrac{4}{25}\)

a: Xét ΔBEC và ΔAEFcó

góc BEC=góc AEF

góc ECB=góc EFA

=>ΔBEC đồng dạng với ΔAEF

b: Xét ΔFEA và ΔFCD có

góc FEA=góc FCD

góc F chung

=>ΔFEA đồng dạng với ΔFCD

 

13 tháng 4 2022

lx

13 tháng 4 2022

lỗi r bn