K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4
456
CTVHS
3 tháng 11 2024

\(\dfrac{2^x}{16}=2\)

\(2^x:16=2\)

\(2^x=2\cdot16\)

\(2^x=32\)

\(2^x=2^5\)

\(x=5\)

Vậy...

3 tháng 11 2024

2x = 2.16

2x = 32

2x = 25

=> x =5

Vậy x=5

Học tốt nhé e!!

14 tháng 10 2021

\(\sqrt{\left(x-4\right)^2}=x+2\)

\(\left[{}\begin{matrix}x-4=x+2\\x-4=-x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-4-x-2=0\\x-4+x+2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}-6=0\left(vonghiem\right)\\2x-2=0\end{matrix}\right.\Rightarrow x=1\left(tm\right)\)

15 tháng 1 2021

BĐT cần chứng minh tương đương:

\(\left(\sqrt{x^2+16}-5\right)-\left(\sqrt{x^2+7}-4\right)=x-3\)

\(\Leftrightarrow\dfrac{x^2-9}{\sqrt{x^2+16}+5}-\dfrac{x^2-9}{\sqrt{x^2+7}+4}=x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\\left(x+3\right)\left(\dfrac{1}{\sqrt{x^2+16}+5}-\dfrac{1}{\sqrt{x^2+7}+4}\right)=1\left(1\right)\end{matrix}\right.\).

Mặt khác từ pt ban đầu suy ra x - 2 > 0, do đó x > 2.

Do đó vế trái của (1) bé hơn 0.

Suy ra 91) vô nghiệm.

Vậy nghiệm của pt đã cho là x = 3.

 

15 tháng 1 2021

Cách khác: Từ pt đã cho ta thấy x > 2.

PT \(\Leftrightarrow\dfrac{9}{\sqrt{x^2+16}+\sqrt{x^2+7}}=x-2\).

Với x > 3 thì VT < 1; VP > 1.

Với x < 3 thì VT > 1; VP < 1.

Với x = 3 ta thấy thoả mãn.

Vậy nghiệm của pt đã cho là x = 3.

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

25 tháng 5 2021

Ghi thiếu đề bài nên tl lại oho

`sqrt{x-2}+sqrt{6-x}=x^2-8x+16+2sqrt2`

Áp dụng BĐT bunhia ta có:

`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`

`=>VT<=2sqrt2(1)`

Mặt khác:

`VP=x^2-8x+16+2sqrt2`

`=(x-4)^2+2sqrt2>=2sqrt2`

`=>VP>=2sqrt2(2)`

`(1)(2)=>VT=VP=2sqrt2`

`<=>x=4`

Vậy `S={4}`

25 tháng 5 2021

`sqrt{x-2}+sqrt{6-x}=x^2-8x+2sqrt2`

Áp dụng BĐT bunhia ta có:

`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`

`=>VT<=2sqrt2(1)`

Mặt khác:

`VP=x^2-8x+16+2sqrt2`

`=(x-4)^2+2sqrt2>=2sqrt2`

`=>VP>=2sqrt2(2)`

`(1)(2)=>VT=VP=2sqrt2`

`<=>x=4`

Vậy `S={4}`

=>(2x-3)(2x+3)(x-4)-(2x-3)(x-4)(x+4)=0

=>(2x-3)(x-4)(2x+3-x-4)=0

=>(2x-3)(x-4)(x-1)=0

=>\(x\in\left\{1;4;\dfrac{3}{2}\right\}\)

25 tháng 12 2020

ĐKXĐ x≥2

pt ⇔ \(\sqrt{x-2}+\sqrt{9\left(x-2\right)}=16\) ⇔ \(\sqrt{x-2}+3\sqrt{x-2}=16\) ⇔ \(4\sqrt{x-2}=16\) ⇔ \(\sqrt{x-2}=4\) ⇒ \(\left(\sqrt{x-2}\right)^2=4^2\) ⇔ \(x-2=16\) ⇔ \(x=18\)

Vậy phương trình có nghiệm duy nhất x=18

=>(9x^2+24x-6x-16)(x^2+2x+1)=-16

=>(9x^2+18x-16)(x^2+2x+1)=-16

=>(9x^2+18x+9-25)(x^2+2x+1)=-16

=>[9(x+1)^2-25](x+1)^2=-16

=>9(x+1)^4-25(x+1)^2+16=0

Đặt (x+1)^2=a

=>9a^2-25a+16=0

=>a=1 hoặc a=16/9

=>(x+1)^2=1 hoặc (x+1)^2=16/9

=>\(x\in\left\{0;-2;\dfrac{1}{3};-\dfrac{7}{3}\right\}\)

3 tháng 2 2023

CẢM ƠN NHÌU NHA

11 tháng 2 2023

\(\left(x+2\right)^3-16\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left[\left(x+2\right)^2-16\right]=0\)

\(\Rightarrow\left(x+2\right)\left(x+2-4\right)\left(x+2+4\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x-2\right)\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\\x+6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\\x=-6\end{matrix}\right.\)

Vậy \(S=\left\{-2;2;-6\right\}\)

\(2x^3-6x^2+12x-8=0\)

\(\Rightarrow2x^3-2x^23+3.2^2-2^3=0\)

\(\Rightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

22 tháng 9 2023

a)

\(9^{16-x}=27^{x+4}\\ \Leftrightarrow3^{2.\left(16-x\right)}=3^{3.\left(x+4\right)}\\ \Leftrightarrow2.\left(16-x\right)=3.\left(x+4\right)\\ \Leftrightarrow32-2x-3x-12=0\\ \Leftrightarrow-5x=-20\Leftrightarrow x=4\)

b)

\(16^{x-2}=0,25.2^{-x+4}\\ \Leftrightarrow2^{4\left(x-2\right)}=0,25.2^{-x+4}\\ \Leftrightarrow2^{4x-8+x-4}=0,25\\ \Leftrightarrow2^{5x-12}=0,25\Leftrightarrow5x-12=\log_20,25\\ \Leftrightarrow5x-12=-2\\ \Leftrightarrow x=2\)

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1