chứng minh rằng E= 2 + 2^2+..+2^2024 chia hết cho 15
giúp tớ với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(2^{121}\) chẵn nên k chia hết cho 3 và 7
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)+2^{121}\\ A=\left(2+1\right)\left(2+2^3+...+2^{119}\right)+2^{121}\\ A=3\left(2+2^3+...+2^{119}\right)+2^{121}⋮̸3\left(2^{121}⋮̸3\right)\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)+2^{121}\\ A=\left(1+2+2^2\right)\left(2+...+2^{118}\right)+2^{121}\\ A=7\left(2+...+2^{118}\right)+2^{121}⋮̸7\left(2^{121}⋮̸7\right)\)
a, A = 92n - 1
A = (92)n - 1
Ta có : 92 có chữ số tận cùng là 1
=> (92)n có chữ số tận cùng là 1 ( vì số có chữ số tận cùng là 1 thì nâng lên lũy thừa bao nhiêu vẫn có chữ số tận cùng là 1)
Mà 1 có chữ số tận cùng là 1
=> 92n - 1 có chữ số tận cùng là 0
=> 92n - 1 chia hết cho 2 và 5 ( vì 0 \(⋮\)2 và 0 \(⋮\) 5)
Vậy A chia hết cho 2 và 5
CHÂN THÀNH XIN LỖI BẠN VÌ MÌNH CHỈ LÀM ĐƯỢC Ý a, THÔI
Nhớ tích nha
A = 165 + 215
=> A = ( 24 )5 + 215
=> A = 220 + 215
=> A = 215 ( 25 + 1 )
=> A = 215 . 33 chia hết cho 33 ( đpcm )
Ta có: 165 + 215
= (24)5 + 215
= 220 + 215
= 215.25 + 215
= 215.(25 + 1)
= 215.33
Vì 33 chia hết cho 33 nên 215.33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33 (đpcm)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
b)có vì ab + ba sẽ có kết quả là hai số giống nhau.chỉ có số ab nhỏ hơn 55 sẽ có thể nhìn dõ được điều này.
a ) nếu a và b cùng chắn thì ab(a + b) \(⋮\) 2
nếu a chắn, b lẻ(hoặc a lẻ,b chẵn) thì ab(a +b) \(⋮\)2
nếu a,b cùng lẻ thì ab(a+b) \(⋮\)2
b) ab + ba = 10a + b + 10b + a = 11a + 11 b = 11 ( a + b ) \(⋮\)11
Với số nguyên tố \(p\)bất kì, xét dãy số: \(2,22,...,222...22\)(\(p+1\)chữ số \(2\)).
Dãy số đó có \(p+1\)số hạng, do đó theo nguyên lí Dirichlet có ít nhất hai số trong dãy số có cùng số dư khi chia cho \(p\).
Giả sử đó là số \(a=22...22\)(\(k\)chữ số \(2\)) và \(b=222...22\)(\(l\)chữ số \(2\)) với \(l>k\ge1\).
Khi đó số \(b-a=22...200...0\)sẽ chia hết cho \(p\).
Ta có đpcm.
\(E=2+2^2+2^3+2^4+...+2^{2021}+2^{2022}+2^{2023}+2^{2024}\)
\(E=2.\left(1+2+2^2+2^3\right)+...+2^{2021}.\left(1+2+2^2+2^3\right)\)
\(E=2.15+...+2^{2021}.15\)
\(E=\left(2+...+2^{2021}\right).15\)
nên E chia hết cho 15
E=2+22+23+...+22024
E=2(1+2+22+23)+25(1+2+22+23)+...+22021(1+2+22+23)
E=2.15+25.15+...+22021.15
E=15(2+25+...+22021) ⋮ 15 (Vì 15 ⋮ 15) (đpcm)