K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

a. x+(x+2)=0

=>2x+2=0

=>2x=-2

=> x=-2:2

=>x=-1

b. (x+27)(x-13)=0

=> x+27=0        hoặc x-13=0

=> x=-27           hoặc x=13

18 tháng 7 2015

a) x+(x+2)=0

x+x+2=0

2x+2=0

2x=-2

x=-1

 

b) (x+27)(x-13)=0

=> x+27=0 hoặc x-13 = 0

 => x = -27 hoặc x=13

=> \(x\in\left\{-27;13\right\}\)

14 tháng 12 2021

\(a,\Leftrightarrow\left(x-2\right)^3-3x\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-2-3x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(-2x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\\ b,\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)

a: \(x^2+12x+36=0\)

\(\Leftrightarrow\left(x+6\right)^2=0\)

\(\Leftrightarrow x+6=0\)

hay x=-6

b: Ta có: \(x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c: Ta có: \(25x^2-9=0\)

\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
a. $x^2+12x+36=0$

$\Leftrightarrow (x+6)^2=0$

$\Leftrightarrow x+6=0$

$\Leftrightarrow x=-6$

b.

$x^2-1=0$

$\Leftrightarrow (x-1)(x+1)=0$
$\Leftrightarrow x-1=0$ hoặc $x+1=0$

$\Leftrightarrow x=1$ hoặc $x=-1$

c. 

$25x^2-9=0$

$\Leftrightarrow (5x)^2-3^2=0$

$\Leftrightarrow (5x-3)(5x+3)=0$

$\Leftrightarrow 5x-3=0$ hoặc $5x+3=0$

$\Leftrightarrow x=\frac{3}{5}$ hoặc $x=-\frac{3}{5}$

29 tháng 7 2021

`a)4x(x-2)+x-2=0`

`<=>(x-2)(4x+1)=0`

`<=>[(x-2=0),(4x+1=0):}`

`<=>[(x=2),(x=-1/4):}`

Vậy `S={2;-1/4}.`

`b)(3x-1)^3-9=0`

`<=>(3x-1-3)(3x-1+3)=0`

`<=>(3x-4)(3x+2)=0`

`<=>[(3x-4=0),(3x+2=0):}`

`<=>[(x=4/3),(x=-2/3):}`

Vậy `S={4/3;-2/3}.`

`c)x^3-8+(x-2)(x+1)=0`

`<=>(x-2)(x^2+2x+4)+(x-2)(x+1)=0`

`<=>(x-2)(x^2+3x+5)=0`

Mà `x^2+3x+5=(x+3/2)^2+11/4>=11/4>0`

`<=>x-2=0`

`<=>x=2`

Vậy `S={2}`

a) Ta có: \(4x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)

b)Ta có: \(\left(3x-1\right)^2-9=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

c) Ta có: \(x^3-8+\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

6 tháng 8 2021

a, \(4x\left(x-2\right)+x-2=0\Leftrightarrow\left(4x+1\right)\left(x-2\right)=0\Leftrightarrow x=-\dfrac{1}{4};x=2\)

b, \(\left(3x-1\right)^2-9=0\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\Leftrightarrow x=\dfrac{4}{3};x=-\dfrac{2}{3}\)

c, \(x^3-8+\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\ne0\right)=0\Leftrightarrow x=2\)

a) Ta có: \(4x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)

b) Ta có: \(\left(3x-1\right)^2-9=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

16 tháng 8 2023

`a,(5-x)(x-1) < 0`

`<=>5-x<0` hoặc `x-1<0`

`<=>5 <x` hoặc `x<1`

Vậy `S={x|5<x;x<1}`

`b,(x-4)(x+1/2) >= 0`

`<=>TH1 : {(x-4>=0),(x+1/2 >=0):}<=>{(x>=4(TM)),(x>= -1/2(L)):}`

`<=>TH2 :{(x-4<=0),(x+1/2 <= 0):} <=>{(x<=4(L)),(x<=-1/2(TM)):}`

`=>x<= -1/2` hoặc `x>=4`

Vậy `S={x|x<= -1/2 ; x>=4}`

28 tháng 12 2021

\(a,\Leftrightarrow x^2-2x-x^2+1=0\\ \Leftrightarrow-2x+1=0\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(2x-1-x-4\right)\left(2x-1+x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(3x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

7 tháng 9 2021

a) \(x^2-64=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

b) \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c) \(9-6x+x^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

a: Ta có: \(x^2-64=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

b: Ta có: \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

hay \(x=\dfrac{1}{2}\)

c: ta có: \(x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

hay x=3

a: Ta có: \(4\left(x+1\right)^2+\left(2x+1\right)^2-8\left(x-1\right)\left(x+1\right)-11=0\)

\(\Leftrightarrow4x^2+8x+4+4x^2+4x+1-8x^2+8-11=0\)

\(\Leftrightarrow12x=-2\)

hay \(x=-\dfrac{1}{6}\)

b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)-1=0\)

\(\Leftrightarrow x^2+6x+9-x^2-4x+32-1=0\)

\(\Leftrightarrow2x=-40\)

hay x=-20

24 tháng 10 2021

\(a,Sửa:2021x-1+2022x\left(1-2021x\right)=0\\ \Leftrightarrow\left(2021x-1\right)\left(1-2022x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2021}\\x=\dfrac{1}{2022}\end{matrix}\right.\)

14 tháng 6 2021

a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4+x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2-x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{23}{4}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(N\right)\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\left(L\right)\end{matrix}\right.\)

Vậy \(S=\left\{-2\right\}\)

b) \(9x^2-4-\left(3x-2\right)^2=0\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x-2\right)^2=0\)

\(\Leftrightarrow\left(3x-2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]=0\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2-3x+2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\cdot4=0\)

\(\Leftrightarrow3x-2=0\)

\(\Leftrightarrow x=\dfrac{2}{3}\)

Vậy \(S=\left\{\dfrac{2}{3}\right\}\)