Cho tam giác abc có ba góc nhọn có AB > AC đường cao AH chứng minh CH = (BC^2+ AC^2 - AB^2) : 2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác \(ABK\) và tam giác \(ACI\) ta có:
\(\widehat{A}\) chung
\(\widehat{AKB}=\widehat{AIC}\left(=90^o\right)\)
Suy ra \(\Delta ABK~\Delta ACI\left(g.g\right)\)
suy ra \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\Leftrightarrow\dfrac{AK}{AB}=\dfrac{AI}{AC}\).
a) Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
Áp dụng định lí pytago vào ΔAHC vuông tại H, ta được
\(AC^2=AH^2+CH^2\)
Ta có: \(AB^2+AC^2=BH^2+CH^2+AH^2+AH^2=BH^2+CH^2+2\cdot AH^2\)
b) Áp dụng định lí pytago vào ΔABH vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
Áp dụng định lí pytago vào ΔACH vuông tại H, ta được
\(AC^2=AH^2+HC^2\)
Ta có: \(AB^2-AC^2=AH^2+BH^2-AH^2-CH^2=BH^2-CH^2\)(1)
Áp dụng định lí pytago vào ΔEHB vuông tại H, ta được
\(EB^2=EH^2+HB^2\)
Áp dụng định lí pytago vào ΔEHC vuông tại H, ta được
\(EC^2=EH^2+HC^2\)
Ta có: \(EB^2-EC^2=EH^2+BH^2-EH^2-CH^2=BH^2-CH^2\)(2)
Từ (1) và (2) suy ra \(AB^2-AC^2=EB^2-EC^2\)(đpcm)
a)
+ Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:
\(AB^2=AH^2+BH^2\) (định lí Py - ta - go) (1).
+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:
\(AC^2=AH^2+CH^2\) (định lí Py - ta - go) (2).
Từ (1) và (2) \(\Rightarrow AB^2+AC^2=\left(AH^2+AH^2\right)+\left(BH^2+CH^2\right)\)
\(\Rightarrow AB^2+AC^2=AH^2+AH^2+BH^2+CH^2\)
\(\Rightarrow AB^2+AC^2=2AH^2+BH^2+CH^2\)
Hay \(AB^2+AC^2=BH^2+CH^2+2AH^2\left(đpcm\right).\)
Chúc bạn học tốt!
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F co
góc A chung
=>ΔAEB đồng dạng với ΔAFC
b: ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
giúp vs ạ ;(((
khó nha