Tính C=1+3+3²+3³+3⁴+...+3²⁰²⁰
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3A=3+3^2+...3^{2003}\)
\(3A-A=\left(3-3\right)+\left(3^2-3^2\right)+...+3^{2003}-1\)
\(\Leftrightarrow\Leftrightarrow A=\frac{3^{2003}-1}{2}\)
C = 1 + 31 + 32 + 33 + ...+ 399
3C = 31 + 32 + 33+...+ 399 + 3100
3C - C = 3100 - 1
2C = 3100 - 1
C = \(\dfrac{3^{100}-1}{^{ }2}\)
C=1+3+32+...+399
=>3C=3+32+...+3100
=>3C-C=2C=(3+32+...+3100)-(1+3+32+...+399)=3100-1
=>C=\(\dfrac{3^{100}-1}{2}\)
Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)
*) Xét a + b + c = 0 => \(\hept{\begin{cases}-a=b+c\\-b=c+a\\-c=a+b\end{cases}}\)
\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{b.c.a}=-1\)
*) Xét \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow a=b=c}\)
\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Vậy A = -1 hoặc A = 8
a) Ta có: \(A=1^3+2^3+3^3+...+100^3\)
\(=\left(1-1\right)\cdot1\cdot\left(1+1\right)+1+\left(2-1\right)\cdot2\cdot\left(2+1\right)+2+...+\left(100-1\right)\cdot100\cdot\left(100+1\right)+100\)
\(=1+2+1\cdot2\cdot3+...+99\cdot100\cdot101\)
\(=5050+25497450\)
\(=25502500\)
\(C=1+3+3^2+3^3+...+3^{2020}\\ 3C=3+3^2+3^3+3^4+...+3^{2021}\\ 3C-C=3+3^2+3^3+3^4+...+3^{2021}-\left(1+3+3^2+3^3+...+3^{2020}\right)\\ 2C=3^{2021}-1\\ C=\dfrac{3^{2021}-1}{2}\)