Cho a<b .Khẳng định nào sau đây đúng . giải thích ?
A.2a>2b B. -2a+2023>-2b+2023 C.-2a+2023<-2b+2023 D. -2a<-2b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : (-2).3 = -6.
Vì -6 < -4,5 nên suy ra (-2).3 < -4,5.
b) + Ta có : (-2).3 < -4,5
⇒ (-2).3.10 < -4,5.10 (Nhân cả hai vế với 10 > 0, BĐT không đổi chiều).
hay (-2).30 < -45.
+ (-2).3 < -4,5
⇒ (-2).3 + 4,5 < -4,5 + 4,5 (Cộng cả hai vế với 4,5).
Hay (-2).3 + 4,5 < 0.
Nếu a > b và c > 0 thì ac > bc
Nếu a > b và c > 0 thì a + c > b + c
Nếu a > b và c < 0 thì a + c > b + c
Nếu a > b và c < 0 thì ac < bc
Nểu a < b và c > 0 thì ac < bc
Nếu a < b và c > 0 thì a + c < b + c
Nếu a < b và c < 0 thì ac > bc
Nếu a < b và c < 0 thì a + c < b + c
Quy tắc chuyển vế trong bất đẳng thức: khi chuyển một số hạng từ vế này sang vế kia của bất đẳng thức ta phải đổi dấu các số hạng đó, dấu “+” đổi thành dấu “-“ và ngược lại.
Đáp án: A
II sai vì trong trường hợp B ⊂ A thì A ∪ B = A nên |A ∪ B| = |A|. Do đó |A| ≤ |A ∪ B|.
III sai vì trong trường hợp trong số các phần tử của B không có phần tử nào thuộc A thì A \ B = A nên |A ∪ B| = |A|. Do đó |A \ B| ≤ |A ∪ B|.
a)Tam giác MAI có MA<MI+IA(quan hệ 3 cạnh trong tam giác)
Nên: có: MA<MI+IA
MA+MB<MI+IA+MB
MA+MB<IA+IB
Vậy MA+MB<IA+IB (1)
b)Tam giác CBI có IB<IC+CB (quan hệ 3 cạnh trong tam giác)
Nên IB<IC+CB
IB+IA<IC+CB+IA
IB+IA<CA+CB
Vậy IB+IA<CA+CB (2)
c) Từ (1) và (2) suy ra
MA+MB<CA+CB
ze:13.0pt; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; color:#C00000;} .MsoPapDefault {mso-style-type:export-only; margin-bottom:10.0pt; line-height:115%;} @page Section1 {size:8.5in 11.0in; margin:1.0in 1.0in 1.0in 1.0in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;} div.Section1 {page:Section1;} /* List Definitions */ @list l0 {mso-list-id:1148129261; mso-list-type:hybrid; mso-list-template-ids:-1807209504 -1162451228 67698691 67698693 67698689 67698691 67698693 67698689 67698691 67698693;} @list l0:level1 {mso-level-start-at:2; mso-level-number-format:bullet; mso-level-text:; mso-level-tab-stop:none; mso-level-number-position:left; text-indent:-.25in; font-family:Wingdings; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman";} ol {margin-bottom:0in;} ul {margin-bottom:0in;} -->
a)Xét tam giác NMI và Tam giác NHI có
MNI=INH(gt)
NM=NH
NI cạnh chung
Nên tgiac NMI=Tgiac NHI(c-g-c)
b) Xét tgiac MIF và tgiac HIP có
IM=IH(vì tgiac NMI=tgiac NHI)
MIF=HIP(đối đỉnh)
Nên tgiac MIF=Tgiac HIP (ch-gn)
Do đó IF=IP( 2 cạnh tương ứng)
Vậy Tam giác IFP cân tại I
c) Tam giác IHP: có IHP=90 nên IP>IH(tính chất cạnh đối diện góc lớn nhất)
Mà IP=IF => IF>IH
Vậy IF>IH
Chọn B vì a<b thì -2a>-2b
=>-2a+2023>-2b+2023