trong kì thi tuyển sinh vào 10 năm học 2023-2024, số học sinh thi vào trường THTP a bằng 2/3 số học sinh thì vào trường THPT b.Biết rằng tổng số phòng thi của cả hai trường là 80 phòng thi và mỗi phòng thi đúng 24 thí sinh.Hỏi số thí sinh vào mỗi trường là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2x^2-3x-5=0\)
=>\(2x^2-5x+2x-5=0\)
=>\(\left(2x^2-5x\right)+\left(2x-5\right)=0\)
=>\(x\left(2x-5\right)+\left(2x-5\right)=0\)
=>\(\left(2x-5\right)\left(x+1\right)=0\)
=>\(\left[{}\begin{matrix}2x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-1\end{matrix}\right.\)
vậy: \(S=\left\{\dfrac{5}{2};-1\right\}\)
b: Gọi giá tiền của mỗi cây bút bi xanh loại A và mỗi cây bút chì loại 2B lần lượt là a(đồng) và b(đồng)
(Điều kiện: a>0 và b>0)
Số tiền phải trả khi mua 5 cây bút bi xanh loại A là:
\(5\cdot a\left(đồng\right)\)
Số tiền phải trả khi mua 3 cây bút chì loại 2B là:
\(3\cdot b\left(đông\right)\)
Số tiền phải trả khi mua 2 cây bút bi xanh loại A là:
\(2\cdot a\left(đồng\right)\)
Số tiền phải trả khi mua 4 cây bút chì loại 2B là:
\(4\cdot b\left(đồng\right)\)
Khi mua 5 cây bút bi xanh loại A và 3 cây bút chì loại 2B thì phải trả 38500 đồng nên ta có: 5a+3b=38500(1)
Khi mua 2 cây bút bi xanh loại A và 4 cây bút chì loại 2B thì phải trả 28000 đồng nên ta có: 2a+4b=28000(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}5a+3b=38500\\2a+4b=28000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5a+3b=38500\\a+2b=14000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a+3b=38500\\5a+10b=70000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-7b=-31500\\a+2b=14000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4500\\a=14000-2b=14000-2\cdot4500=5000\end{matrix}\right.\left(nhận\right)\)
vậy: Giá tiền của mỗi cây bút bi xanh loại A là 5000 đồng
Giá tiền của mỗi cây bút chì loại 2B là 4500 đồng
Gọi số học sinh dự tuyển của trường AA là xx (học sinh) (x∈N∗;x<560x∈N∗;x<560)
Số học sinh dự tuyển của trường BB là yy (học sinh) (y∈N∗;y<560y∈N∗;y<560)
Vì tổng số học sinh dự thi của hai trường là 750 học sinh nên ta có phương trình: x+y=750x+y=750 (1)
Số học sinh trúng tuyển của trường AA là: 80%.x=45x80%.x=45x (học sinh)
Số học sinh trúng tuyển của trường BB là: 70%.y=710y70%.y=710y (học sinh)
Vì tổng số học sinh trúng tuyển của cả hai trường là 560560 học sinh nên ta có phương trình
45x+710y=56045x+710y=560
⇔8x+7y=5600⇔8x+7y=5600 (2)
Từ (1) và (2) ta có hệ phương trình
{x+y=7508x+7y=5600{x+y=7508x+7y=5600
⇔{7x+7y=52508x+7y=5600⇔{7x+7y=52508x+7y=5600
⇔{y=400(tm)x=350(tm)⇔{y=400(tm)x=350(tm)
Vậy số học sinh dự thi của trường AA là 350350 học sinh
Số học sinh dự thi của trường BB là 400400 học sinh.
1) Gọi x(km/h) là vận tốc của xe 1 ( x > 10 )
Vận tốc của xe 2 = x - 10 (km/h)
Thời gian xe 1 đi hết quãng đường AB = 160/x (km)
Thời gian xe 2 đi hết quãng đường AB = 160/(x-10) (km)
Khi đó xe 1 đến B sớm hơn xe 2 là 48 phút = 4/5 giờ nên ta có phương trình :
\(\frac{160}{x-10}-\frac{160}{x}=\frac{4}{5}\)
<=> \(\frac{160x}{x\left(x-10\right)}-\frac{160\left(x-10\right)}{x\left(x-10\right)}=\frac{4}{5}\)
=> 4x( x - 10 ) = 8000
<=> x2 - 10x - 2000 = 0 (*)
Xét (*) có Δ = b2 - 4ac = (-10)2 - 4.1.(-2000) = 100 + 8000 = 8100
Δ > 0 nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{10+\sqrt{8100}}{2}=50\left(tm\right)\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{10-\sqrt{8100}}{2}=-40\left(ktm\right)\end{cases}}\)
Vậy vận tốc của xe 2 là 40km/h
gọi vận tốc của xe thứ hai là x (km/h)
⇒t/g xe thứ hai đi là \(\dfrac{160}{x}\)(h)
vận tốc của xe thứ nhất là x+10 (km/h) (x>0)
⇒t/g của xe thứ nhất đi là \(\dfrac{160}{x+10}\left(h\right)\)
vì xe thứ nhất đến sớm hơn xe thứ hai là 48'=\(\dfrac{4}{5}h\) nên ta có pt:
\(\dfrac{160}{x}-\dfrac{160}{x+10}=\dfrac{4}{5}\)
⇔\(\dfrac{800x+8000-800x}{5x\left(x+10\right)}=\dfrac{4x^2+40x}{5x\left(x+10\right)}\)⇒4x\(^2\)+40x-8000=0
Δ=40\(^2\)-4.4.(-8000)=129600>0
⇒pt có hai nghiệm pb
x\(_{_{ }1}\)=\(\dfrac{-40+\sqrt{129600}}{8}\)=40 (TM)
x\(_2\)=\(\dfrac{-40-\sqrt{129600}}{8}\)=-50 (KTM)
vậy vận tốc của xe thứ hai là 40 km/h
Tổng số thí sinh tham gia thi:
80 × 24 = 1920 (thí sinh)
Tổng số phần bằng nhau:
2 + 3 = 5 (phần)
Số thí sinh vào trường Nguyễn Viết Xuân:
1920 : 5 × 2 = 768 (thí sinh)
Số thí sinh vào trường Lê Xoay:
1920 - 768 = 1152 (thí sinh)
Toán nâng cao hai tỉ số tổng không đổi em nhé
a,Số học sinh khối 5 của trường luôn không đổi.
Số học sinh khối 5 lúc đầu có nguyện vọng bằng:
\(\dfrac{1}{8}\) số học khối 5 của trường
Số học sinh khối 5 lúc sau có nguyện vọng bằng:
1 : ( 1 + 5) = \(\dfrac{1}{6}\) (số học sinh khối 5 của trường)
8 học sinh ứng với phân số là:
\(\dfrac{1}{6}\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{24}\)( số học sinh khối 5 của trường là)
Số học sinh khối 5 của trường là:
8 : \(\dfrac{1}{24}\) = 192 (học sinh)
b, Đầu năm số học sinh có nguyện vọng vào trường THCS Lý Thường Kiệt là:
192 \(\times\) \(\dfrac{1}{8}\) = 24 (học sinh)
Đáp số: a, 192 học sinh
b, 24 học sinh
Gọi số học sinh trúng tuyển của trường A và trường B lần lượt là a,b
Tổng số học sinh trúng tuyển là;
250*84%=210(bạn)
=>a+b=210
Số học sinh của trường A là:
a:80%=a:4/5=5/4a
Số học sinh của trường B là:
b:90%=b:9/10=10/9b
Theo đề, ta có hệ phương trình:
a+b=210 và 5/4a+10/9b=250
=>a=120 và b=90