K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

có bạn nào giúp minh câu này với

30 tháng 10 2016

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)

A = 5460.(1+4^6+4^12+4^18)

A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420

A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21

Sửa đề: A=4+4^2+4^3+...+4^23+4^24

A=4(1+4+4^2)+...+4^22(1+4+4^2)

=21(4+...+4^22) chia hết cho 21

A=(4+4^2)+4^2(4+4^2)+...+4^22(4+4^2)

=20(1+4^2+...+4^22) chia hết cho 20

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

21 tháng 12 2022

`A=4+4^2+4^3+...+4^98 +4^99`

`A=(4+4^2+4^3)+...+(4^97 +4^98 +4^99)`

`A=4(1+4+4^2)+...+4^97 (1+4+4^2)`

`A=4.21+...+4^97 .21`

`A=21.(4+4^97)  \vdots 21`

   `=>Đpcm`

Ta có :

4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c 

= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21

( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )

=> 400a + 40b + 4c chia hết cho 21

=> 4 ( 100a + 10b + c ) chia hết cho 21

=> 100a + 10b + c chia hết cho 21

=> abc chia hết cho 21

Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21

12 tháng 11

Ta có :

4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c 

= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21

( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )

=> 400a + 40b + 4c chia hết cho 21

=> 4 ( 100a + 10b + c ) chia hết cho 21

=> 100a + 10b + c chia hết cho 21

=> abc chia hết cho 21

Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21