K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

a) 2n + 5        3n + 7 

Gọi d là ƯCLN của 2n + 5 và 3n + 7      ( d e N* )

 Ta có : 2n + 5   \(⋮\) d      ( 1 )

            hay 3. ( 2n + 5 ) \(⋮\)d = 6n + 5  \(⋮\) d

            3n + 7  \(⋮\)d               ( 2 )

            hay  2.( 3n + 7 ) \(⋮\)d  =   6n + 7 \(⋮\)d

      Từ ( 1 ) và ( 2 ) suy ra ( 6n + 7 ) - ( 6n + 5 ) \(⋮\)d

                                          hay 2  \(⋮\)d   suy ra d = 1 và 2

  Suy ra ƯCLN ( 2n + 5 ; 3n + 7 ) = 1

            Vậy  hai số đó là số nguyên tố cùng nhau.

Câu còn lại bạn làm tương tự nhé

            

20 tháng 11 2017

a) 2n +5 và 3n+7

Đặt d=UCLN(2n+5;3n+7)

ta có: 2n+5 chia hết cho d=> 3(2n + 5)=6n+15 chia hết cho d

3n+7 chia hết cho d => 2(3n+7)=6n+14 chia hết cho d

=> (6n+15)-(6n+14)=1 chia hết cho d

=> d =1

vậy 2n+3 và 3n+7 là 2 số nguyên tố  cùng nhau

b) 5n +7 và 3n+4

Đặt d = UCLN(5n+7;3n+4)

ta có: 5n+7 chia hết cho d => 3(5n+7)=15n+21 chia hết cho d

3n+4 chia hết cho d =>5(3n+4)=15n+20 chia hết cho d

=> (15n+21) - (15n+20)=1 chia hết cho d

=>d=1

vậy 5n+7 và 3n+4 là 2 số nguyên tố cùng nhau

16 tháng 11 2015

tick cho mình rồi mình lm cho

2 tháng 12 2017

Gọi d là ƯCLN(5n+7, 3n+4), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}5n+7⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(5n+7\right)⋮d\\5\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+21⋮d\\15n+20⋮d\end{cases}}}\)

\(\Rightarrow\left(15n+21\right)-\left(15n+20\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(5n+7,3n+4\right)=1\)

\(\Rightarrow\) 5n+7 và 3n+4 là hai số nguyên tố cùng nhau.

30 tháng 7 2021

cùng nhau  ko phải bằng nhau

30 tháng 10 2021

b: Vì 2n+3 là số lẻ

mà 4n+8 là số chẵn

nên 2n+3 và 4n+8 là hai số nguyên tố cùng nhau

28 tháng 10 2015

Gọi x là ƯC của 2.n+5 va 3.n +7

2.n+5 chia hết cho x=> 3{2n+5} chia hết cho  x

3n+7 chia hết cho  x => 2{3n+7} chia hết cho x

3{2n+5} - 2{3n+7chia hết cho x

6n+15 - 6n+14 chia hết cho x

=>1 chia hết cho x

28 tháng 10 2015

Gọi ƯC(2n+5,3n+7)=d

Ta có: 2n+5 chia hết cho d=>3.(2n+5)=6n+15 chia hết cho d

           3n+7 chia hết cho d=>2.(3n+7)=6n+14 chia hết cho d

=>6n+15-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2n+5,3n+7)=1

=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

12 tháng 11 2017

a) Gọi 2 số lẻ liên tiếp là 2n+ 1; 2n+ 3.

Gọi( 2n+ 1; 2n+ 3)= d.

=> 2n+ 1\(⋮\) d; 2n+ 3\(⋮\) d.

=>( 2n+ 3)-( 2n+ 1)\(⋮\) d.

=> 2n+ 3- 2n- 1\(⋮\) d.

=> 2\(⋮\) d.

=> d\(\in\){ 1; 2}.

Mà 2n+ 1 không\(⋮\) 2.

=> d= 1.

=>( 2n+ 1; 2n+ 3)= 1.

Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.

b) Gọi( 2n+ 5; 3n+ 7)= d.

=> 2n+ 5\(⋮\) d; 3n+ 7\(⋮\) d.

Ta có: 2n+ 5\(⋮\) d.

=> 3( 2n+ 5)\(⋮\) d.

=> 6n+ 15\(⋮\) d( 1).

3n+ 7\(⋮\) d.

=> 2( 3n+ 7)\(⋮\) d.

6n+ 14\(⋮\) d( 2).

Từ( 1) và( 2), ta có:

( 6n+ 15)-( 6n+ 14)\(⋮\) d.

=> 6n+ 15- 6n- 14\(⋮\) d.

=> 1\(⋮\) d.

=> d= 1.

=>( 2n+ 5; 3n+ 7)= 1.

Vậy 2n+ 5 và 3n+ 7 nguyên tố cùng nhau.

14 tháng 7 2016

a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

14 tháng 7 2016

 Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn