tìm đa thức biết khi chia đa thức đó cho x-2 dư 2, chia cho x-3 dư 7 và khi chia cho x^2-5x+6 được thương là 2x và còn dư
bạn nào làm được mình tích cho
gợi ý, dùng định lý bezout
mình thử rồi nhưng mới ra một nửa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)
Lời giải:
Gọi dư khi chia $f(x)$ cho $(x-1)(x+2)$ là $ax+b$ (dư phải có bậc nhỏ hơn đa thức chia)
Khi đó:
$f(x)=5x^2(x-1)(x+2)+ax+b$
Ta có:
$f(1)=a+b=4\Rightarrow a=4-b$
$f(-2)=-2a+b=1$
Thay $a=4-b$ thì: $-2(4-b)+b=1$
$\Rightarrow -8+2b+b=1$
$\Rightarrow 3b=9\Rightarrow b=3$
$a=4-b=4-3=1$
Vậy $f(x)=5x^2(x-1)(x+2)+x+3$
Gọi đa thức cần tìm là f(x); g(x),r(x), q(x) lần lượt là thương và số dư của f(x) cho x-2,x-3, x2-5x+6
Ta có f(x)= (x2-5x+6).2x+q(x)
Vì bậc của số dư luôn nhỏ hơn bậc của số bị chia mà x2-5x+6 có bậc là 2=> q(x) là đa thức bậc nhất => q(x)=ax+b
=> f(x)= (x2-5x+6).2x+ax+b=(x-2)(x-3).2x+ax+b
Ta cũng có
• f(x) = (x-2).g(x)+2
•f(x)= (x-3).r(x)+7
Ta xét các giá trị của x
+ x=2=> f(x)=2=> 2a+b=2(1)
+ x=3=> f(x) =7=> 3a+b= 7(2)
Lấy (2)-(1) ta có a=5=> b=-12
=> f(x)=(x2-5x+6).2x+5x-12
= 2x3-10x2+12x+5x-12= 2x3-10x2+17x-12
các bạn làm cách nào cũng đc
ko bắt buộc phải dùng định lí bezout