Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức cần tìm là f(x); g(x),r(x), q(x) lần lượt là thương và số dư của f(x) cho x-2,x-3, x2-5x+6
Ta có f(x)= (x2-5x+6).2x+q(x)
Vì bậc của số dư luôn nhỏ hơn bậc của số bị chia mà x2-5x+6 có bậc là 2=> q(x) là đa thức bậc nhất => q(x)=ax+b
=> f(x)= (x2-5x+6).2x+ax+b=(x-2)(x-3).2x+ax+b
Ta cũng có
• f(x) = (x-2).g(x)+2
•f(x)= (x-3).r(x)+7
Ta xét các giá trị của x
+ x=2=> f(x)=2=> 2a+b=2(1)
+ x=3=> f(x) =7=> 3a+b= 7(2)
Lấy (2)-(1) ta có a=5=> b=-12
=> f(x)=(x2-5x+6).2x+5x-12
= 2x3-10x2+12x+5x-12= 2x3-10x2+17x-12
các bạn làm cách nào cũng đc
ko bắt buộc phải dùng định lí bezout
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)