tìm xyz biết (x+y): (x-y):(x.y)=5:1:12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
x/12=y/9=z/5 = k => x = 12k ; y = 9k ; z = 5k
Thay vào ta được:
12k.9k.5k = 20
540k3 = 20
k3 = 1/27
Vậy k = 1/3
x = 1/3 . 12 = 4
y = 9.1/3 = 3
z = 1/3 . 5 = 5/3
a, \(xy=5\)hay \(x;y\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x | 1 | -1 | 5 | -5 |
y | 5 | -5 | 1 | -1 |
c, \(\left(x+1\right)\left(y-5\right)=-5\)hay \(x+1;y-5\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
tự lập bảng, tương tự với mấy bài khác chỉ khác nó có điều kiện thì xét nó rồi kết luận nhé!
đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k;y=9k;z=5k\)
Mà xyz = 20
\(\Rightarrow\)12k . 9k . 5k = 20
\(\Rightarrow\)540k3 = 20
\(\Rightarrow\)k3 = \(\frac{1}{27}\)
\(\Rightarrow\)k = ( -3 )
\(\Rightarrow\)x = -36 ; y = -27 ; z = -15
Ta có:
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\Leftrightarrow x=12k;y=9k;z=5k\) và \(xyz=20\)
\(\Rightarrow12k.9k.5k=20\)
\(\Rightarrow540k^3=20\Leftrightarrow k=\sqrt[3]{20:540}=\frac{1}{3}\)
\(\hept{\begin{cases}x=12.\frac{1}{3}=4\\y=9.\frac{1}{3}=3\\z=5.\frac{1}{3}=\frac{5}{3}\end{cases}}\)
Vậy x = 4; y = 3 ; z = 5/3
Từ giả thiết (gt) => \(\frac{x+y}{5}=\frac{x-y}{1}=\frac{x.y}{12}\) .Áp dụng tính chất của dãy tỉ số bằng nhau, ta có
\(\frac{x+y}{5}=\frac{x-y}{1}=\frac{x.y}{12}=\frac{x+y+x-y}{5+1}=\frac{2x}{6}=\frac{4x}{12}\Rightarrow4x=12\Leftrightarrow y=2\)
Khi đó: \(\frac{x+4}{5}=\frac{4x}{12}=\frac{x}{3}\Rightarrow3.\left(x+4\right)=5x\Leftrightarrow2x=12\Leftrightarrow x=6\)
Vậy \(\left(x,y\right)=\left(6,4\right)\)
thank