Tìm nghiệm nguyên dương của phương trình 3x+171=y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số chính phương chia 4 dư 0 hoặc 1 mà 171 chia 4 dư 3
nên 3^x phải chia 4 dư 1 hay x chẵn
x=2k thì: \(\left(3^k\right)^2+171=n^2\)
đơn giản nha
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
- Với \(x=1\Rightarrow y=1\)
- Với \(x>1\Rightarrow y>1\)
\(\Rightarrow3^x=2^y+1\)
Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)
Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm)
\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)
\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)
\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)
\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)
Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)
x, y nguyên dương
=> x, y >0
Ta có: y : 4 dư 0; 1; 2; 3 => \(y^2\): 4 dư 0; 1
Vì 32\(⋮\)4
=> \(3^x\): 4 dư 0 hoặc 1
Mà x >0 => \(3^x\): 4 dư 1 (1)
Với x là số lẻ => x = 2k + 1
=> \(3^{2k+1}=3^{2k}.3\):4 dư 3 loại vì (1)
=> x là số chẵn => x = 2k (k nguyên dương )
Khi đó: \(3^{2k}-32=y^2\)
<=> \(\left(3^k-y\right)\left(3^k+y\right)=32\)
Vì x, y nguyên dương => \(3^k+y>3^k-y>1\)
Có thể xảy ra 2 TH
TH1: \(\hept{\begin{cases}3^k+y=16\\3^k-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}3^k=9\\y=7\end{cases}\Leftrightarrow\hept{\begin{cases}k=2\\y=7\end{cases}}}\)=> x = 4; y = 7 thử lại thỏa mãn
TH2: \(\hept{\begin{cases}3^k+y=8\\3^k-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}3^k=6\\y=2\end{cases}}\)loại
Vậy x = 4 ; y= 7
x = 6
y = 30
Mình nới học lớp 5 mà bố mình bắt làm bài lớp 9