K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

\(=\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=\left(x+1\right)\left(x^2-7x+19\right)=0\)

Ta thấy:  \(x^2-7x+19=x^2-2\times\frac{7}{2}x+\frac{7}{2}^2+\frac{27}{4}=\left(x-\frac{7}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)lớn hơn 0

\(\Rightarrow x+1=0\Rightarrow x=-1\)

18 tháng 11 2017

\(x^3-6x^2+12x+19=0\)

\(\Leftrightarrow\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-7x+19\right)=0\)

Mà \(x^2-7x+19>0\)với \(\forall x\)

\(\Rightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(x=-1\)

27 tháng 10 2021

\(\Leftrightarrow\left(x+2\right)^2\cdot\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

27 tháng 10 2021

\(\Leftrightarrow x^3+5x^2+8x+4=0\\ \Leftrightarrow\left(x+1\right)\left(x+2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

NV
5 tháng 5 2021

\(\Leftrightarrow x^3-6x^2+12x-8=-27\)

\(\Leftrightarrow\left(x-2\right)^3=\left(-3\right)^3\)

\(\Leftrightarrow x-2=-3\)

\(\Leftrightarrow x=-1\)

5 tháng 5 2021

x3+6x^2+12x−19=0

(x^3+6x^2+12x+8)−27=0

(x+2)^3=3

x+2=3

x=1

Vậy...

 

 

e: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

f: Ta có: \(x^3-6x^2+12x-19=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-11=0\)

\(\Leftrightarrow\left(x-2\right)^3=11\)

hay \(x=\sqrt[3]{11}+2\)

13 tháng 7 2021

1. 

\(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\\ =\left(12x^2+6x\right)\left(y+z+y-z\right)\\ =2y\left(12x^2+6x\right)\\ =2y.6x\left(2x+1\right)\\ =12xy\left(2x+1\right)\)

2. 

\(x\left(x-6\right)+10\left(x-6\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)

Vậy \(x\in\left\{6;-10\right\}\) là nghiệm của pt

Bài 1:

Ta có: \(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\)

\(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)

\(=6x\left(2x+1\right)\cdot2y\)

\(=12xy\left(2x+1\right)\)

Bài 2: 

Ta có: \(x\left(x-6\right)+10\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)

29 tháng 9 2016

\(6x\left(1-3x\right)+9x\left(2x-7\right)+171=0\)

\(\Leftrightarrow6x-18x^2+18x^2-63x+171=0\)

\(\Leftrightarrow-57x=-171\)

\(\Leftrightarrow x=3\)

\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+4}{2012}\)

\(\Leftrightarrow\left(\frac{x+1}{2015}+1\right)+\left(\frac{x+2}{2014}+1\right)-\left(\frac{x+3}{2013}+1\right)-\left(\frac{x+4}{2012}+1\right)=0\)

\(\Leftrightarrow\)\(\frac{x+2016}{2015}+\frac{x+2016}{2014}-\frac{x+2016}{2013}+\frac{x+2016}{2012}=0\)

\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)

\(\Leftrightarrow x+2016=0\) ( vì \(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\ne0\) )

\(\Leftrightarrow x=-2016\)

22 tháng 3 2022

`Answer:`

a. \(x^3+6x^2+12=19\)

\(\Leftrightarrow x^3+6x^2+12x-19=0\)

\(\Leftrightarrow x^3-x^2+7x^2-7x+19x-19=0\)

\(\Leftrightarrow x^2.\left(x-1\right)+7x\left(x-1\right)+19\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+19\right)=0\)

Ta có \(x^2+7x+19=x^2+2x.3,5+12,25+6,75=\left(x+3,5\right)^2+6,75>0\)

\(\Rightarrow x-1=0\Leftrightarrow x=1\)

b. \(5\left(x+9\right)^2.\left(x-4\right)^3-10\left(x+9\right)^3.\left(x-4\right)^2=0\)

\(\Leftrightarrow5\left(x+9\right)^2.\left(x-4\right)^2.[x-4-2\left(x+9\right)]=0\)

\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(x-4-2x-18\right)=0\)

\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(-x-22\right)=0\)

\(\Leftrightarrow\left(x+9\right)^2=0\) hoặc \(\left(x-4\right)^2=0\) hoặc \(-x-22=0\)

\(\Leftrightarrow x+9=0\) hoặc \(x-4=0\) hoặc \(-x=22\)

\(\Leftrightarrow x=-9\) hoặc \(x=4\) hoặc \(x=-22\)

c. \(\left(2x+3\right)^2+\left(x-2\right)^2-2\left(2x+3\right)\left(x-2\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left(2x+3-x+2\right)^2\)

\(=\left(x+5\right)^2\)

19 tháng 2 2020

a, x^2 - x - 20 = 0

=> x^2 - 5x + 4x - 20 = 0

=> x(x - 5) + 4(x - 5) = 0

=> (x + 4)(x - 5) = 0

=> x + 4 = 0 hoặc x - 5 = 0

=> x = -4 hoặc x = 5

b, x^3 - 6x^2 + 12x + 19 = 0

=> x^3 + x^2 - 7x^2 - 7x + 19x + 19 = 0

=> x^2(x + 1) - 7x(x + 1) + 19(x + 1) = 0

=> (x^2 - 7x + 19)(x + 1) = 0

x^2 - 7x + 19 > 0

=> x + 1 = 0

=> x = -1

19 tháng 2 2020

\(a,x^2-x-20=0\)

\(x^2-5x+4x-20=0\)

\(\left(x-5\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)

\(b,x^3-6x^2+12x+19=0\)

\(\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)

\(\left(x+1\right)\left(x^2-7x+19\right)=0\)

Vì \(\left(x^2-7x+19\right)>0\forall x\)

\(x+1=0\)

\(x=-1\)

25 tháng 7 2016

x^3-6^2+12x-8=1

(x-2)^3=1

=>x-2=1

=>x=3

Câu b tương tự nha

a: \(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)

hay \(x\in\left\{0;\sqrt{3};-\sqrt{3}\right\}\)

b: \(=\dfrac{x^3-3x^2+6x-8}{x-2}=\dfrac{x^2-2x-x^2+2x+4x-8}{x-2}=x^2-x+4\)