K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

30 tháng 9 2019

dit me may 

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

7 tháng 7 2018

\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}=\frac{\sqrt{5\left(z-5\right)}}{\sqrt{5}z}+\frac{\sqrt{4\left(x-4\right)}}{2y}+\frac{\sqrt{3\left(x-3\right)}}{\sqrt{3}x}\)

Áp dụng BĐT Cosi ta có : \(A\le\frac{\frac{5+z-5}{2}}{\sqrt{5}z}+\frac{\frac{4+y-4}{2}}{2y}+\frac{\frac{3+x-3}{2}}{\sqrt{3}x}=\frac{\sqrt{5}}{10}+\frac{1}{4}+\frac{\sqrt{3}}{6}\)

Dấu "=" xảy ra \(\Leftrightarrow z=10;y=8;x=6\)

31 tháng 7 2016

\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}\)

Áp dụng bất đẳng thức Côsi:

\(z=z-5+5\ge2\sqrt{5.\left(z-5\right)}\)

\(\Rightarrow\frac{\sqrt{z-5}}{z}\le\frac{1}{2\sqrt{5}}\)

Dấu bằng xảy ra khi \(z-5=5\Leftrightarrow z=10\)

tương tự x, y.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

31 tháng 7 2016

đề thiếu điều kiện

11 tháng 10 2016

Ta có

\(\frac{\sqrt{y-1}}{y}\le\frac{1+y-1}{2y}=\frac{1}{2}\)

\(\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)

\(\Rightarrow A\le1\)

Đạt được khi x = y = 2

cái này mk chưa hok nên ko thể giải!!!!!!! mong bạn thông cảm ^^

547476576578587592375632252535653256205155916524235598354641545622

15 tháng 10 2017

\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)

ta co \(1.\sqrt{x-1}\le\frac{x+1-1}{2}=\frac{x}{2}\)

\(2.\sqrt{y-4}=\sqrt{4}\sqrt{y-4}\le\frac{y-4+4}{2}=\frac{y}{2}\)

\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{4}\sqrt{y-4}}{2y}\le\frac{\frac{x}{2}}{x}+\frac{\frac{y}{2}}{2y}=\frac{x}{2x}+\frac{y}{4y}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

vay max \(M=\frac{3}{4}\)khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)

10 tháng 11 2018

x=2 y=8