Tính thể tích và diện tích toàn phần hình lăng trụ đứng tam giác vuông có 2 cạnh góc vuông lần lượt là 3cm, 4cm, cạnh đối diện góc vuông 5cm, chiều cao hình lăng trụ đứng là 1,8dm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Py - Ta - Go , độ dài cạnh còn lại của mặt đáy tam giác là :
\(\sqrt{3^2+4^2}=5\left(cm\right)\)
Diện tích xung quanh hình lăng trụ đứng :
\(S_{xq}=\left(3+4+5\right).8=96\left(cm^2\right)\)
Diện tích toàn phần :
\(S_{tp}=96+\left(3.4\right)=108\left(cm^2\right)\)
Thể tích :
\(V=\dfrac{3.4}{2}.8=48\left(cm^3\right)\)
\(S_{XQ}=\left(5+12+13\right)\cdot8=8\cdot26=204\left(cm^2\right)\)
\(S_{TP}=204+2\cdot5\cdot12\cdot2=204+4\cdot60=204+240=444\left(cm^2\right)\)
\(V=5\cdot12\cdot8=60\cdot8=480\left(cm^3\right)\)
a. Thể tích là:
\(\frac{3x4}{2}\)x 9 = 54 cm3
Trong tam giác vuông ABC (vuông tại A), theo định lý Pytago, ta có cạnh huyền bằng:
\(\sqrt{3^2+4^2}\) = 5 cm
Diện tích xung quanh là:
(3 + 4 + 5) x 9 = 108 cm2
Diện tích toàn phần là:
108 + 3 x 4 = 120 cm2
b. Diện tích xung quanh là:
(3 + 4) x 2 x 5 = 70 cm2
Đáp số : 70 cm2
BC=căn 6^2+8^2=10cm
Sxq=(6+8+10)*10=240cm2
Stp=240+2*6*8/2=288cm2
V=1/2*6*8*10=240cm3
a) Trong ΔΔABC vuông tại A theo định lí Pitago ta có ;
CB=√32+42=5(cm)CB=32+42=5(cm)
Diện tích xung quanh của lăng trụ :
(3 + 4 + 5).6 = 72(cm2)
b) Diện tích mặt đáy là :
12⋅3⋅4=6(cm2)12⋅3⋅4=6(cm2)
Thể tích của lăng trụ là:
6 x 6 = 36(cm2)
1,8dm=18cm
Diện tích đáy là: \(S_{Đáy}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
Thể tích hình lăng trụ là: \(6\cdot18=108\left(cm^3\right)\)
Chu vi đáy là 3+4+5=12(cm)
Diện tích xung quanh là: \(12\cdot18=216\left(cm^2\right)\)
Diện tích toàn phần là: \(216+6\cdot2=216+12=228\left(cm^2\right)\)