Cho đa thức: \(f\left(x\right)=x^5-5x^4+9x^3-9x^2+8x-4\)
a) Phân tích đa thức f(x) thành nhân tử
b) Tìm các giá trị nguyện dương của x để f(x)=20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow xy-y+2-2x=0\)
\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Với \(x=1\). Thay vào (2) ta được:
\(2y+y^2+3y=6\)
\(\Leftrightarrow y^2+5y-6=0\)
\(\Leftrightarrow y^2+y-6y-6=0\)
\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)
Với \(y=2\). Thay vào (2) ta được:
\(2x.2+2^2+3.2=6\)
\(\Leftrightarrow4x+4+6=6\)
\(\Leftrightarrow x=-1\)
Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)
Bài 2:
\(f\left(x\right)=x^4+6x^3+11x^2+6x\)
\(=x\left(x^3+6x^2+11x+6\right)\)
\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)
\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)
\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.
a. x3+x2+2x2+2x
= (x3+x2)+(2x2+2x)
= x2(x+1)+2x(x+1)
= (x2+2x)(x+1)
= x(x+2)(x+1)
My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé
https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N
a) f(x) = -15x3+5x4-4x2+8x2-9x3-x4+15-7x3
= (5x4-x4)-(15x3+9x3+7x3)+(8x2-4x2)+15
= 4x4-31x3+4x2+15
b) f(1)= 4.14-31.13+4.12+15 = -8
f(-1) = 4.(-1)4-31.(-1)3+4.(-1)2+15 = 54
P/s: hình như sai tí đấy bạn, đa thức ở dưới phải là \(g\left(x\right)=x^2-x-2\)
Ta có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)
Như vậy nếu f(x)chia hết cho \(x^2-x-2,\)thì cũng chia hết cho (x-2)(x+1) . Áp dụng định lí Bezout và định nghĩa phép chia hết, ta thay x=-1 vào \(f\left(x\right):f\left(-1\right)=1+19+21-1+k=0\Rightarrow k=-30\)
Bổ sung cách 1 cho Khả Tâm
Lấy \(\frac{f(x)}{g(x)}\)để tìm số dư và đạt số dư bằng 0 để tìm k.
Ta có : \(x^4-9x^3+21x^2+x+k=\left[x^2-x-2\right]\left[x^2-8x+15\right]+k+30\)
\(f(x)⋮g(x)\)thì cần và đủ là : \(r(x)=k+30=0\Rightarrow k=-30\)
a) A(x) = f(x) + g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) + ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )
= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 + 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x
= ( 2x^3 - 4x^3 + 5x^3 ) + ( 3x - 9x ) + ( 1/2 + 0,2 ) + ( -5x^4 + 3x^4 ) - 7x^2
= 3x^3 - 6x + 0,7 - 2x^4 - 7x^2
B(x) = f(x) - g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) - ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )
= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 - 3x^4 - 0,2 + 7x^2 - 5x^3 + 9x
= ( 2x^3 - 4x^3 - 5x^3 ) + ( 3x + 9x ) + ( 1/2 - 0,2 ) + ( -5x^4 - 3x^4 ) + 7x^2
= -7x^3 + 12x + 0,3 -8x^4 + 7x^2
a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)
=x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)
=(x^4-4x^3+5x^2-4x+4)(x-1)
=[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)
=(x^3-2x^2+x-2)(x-2)(x-1)
=(x^2+1)(x-2)^2(x-1)