2024x (x-\(\dfrac{2024}{2025}\)) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


B = \(1-\dfrac{1}{2025}\) \(A=1-\dfrac{1}{2024}\)
Vì \(\dfrac{1}{2025}< \dfrac{1}{2024}\)
Nên B>A
Ta có :
\(\dfrac{2023}{2024}\)=\(\dfrac{2024-1}{2024}\)=\(\dfrac{2024}{2024}\)-\(\dfrac{1}{2024}\)=1-\(\dfrac{1}{2024}\)
\(\dfrac{2024}{2025}\)=\(\dfrac{2025-1}{2025}\)=\(\dfrac{2025}{2025}\)-\(\dfrac{1}{2025}\)=1=\(\dfrac{1}{2025}\)
Ta thấy: \(\dfrac{1}{2024}\) lớn hơn \(\dfrac{1}{2025}\)
Nên : \(\dfrac{2023}{2024}\) lớn hơn \(\dfrac{2024}{2025}\)
⇒A lớn hơn B

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}-n\sqrt{n+1}].[\left(n+1\right)\sqrt{n}+n\sqrt{n+1}]}\)
=\(\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\)
=\(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Áp dụng ta có S=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-...+\dfrac{1}{\sqrt{2024}}-\dfrac{1}{\sqrt{2025}}=1-\dfrac{1}{\sqrt{2025}}=1-\dfrac{1}{45}=\dfrac{44}{45}\)
Ta có công thức tổng quát:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Vậy \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{2025\sqrt{2024}+2024\sqrt{2025}}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{2024}}-\dfrac{1}{\sqrt{2025}}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2025}}=1-\dfrac{1}{45}=\dfrac{44}{45}\)

\(1:\dfrac{2}{3}:\dfrac{3}{4}:\dfrac{4}{5}:...:\dfrac{2024}{2025}\)
= \(1\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{2025}{2024}=\dfrac{2025}{2}\)

Ta có: x+y+z=0
=>\(\left(x+y+z\right)^2=0^2=0\)
=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
=>\(x^2+y^2+z^2=0\)
mà \(x^2\ge0\forall x;y^2\ge0\forall y;z^2\ge0\forall z\)
nên \(\begin{cases}x=0\\ y=0\\ z=0\end{cases}\)
\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}\)
\(=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}\)
=-1+0+1
=0

Ta có: x+y+z=0
=>\(\left(x+y+z\right)^2=0^2=0\)
=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
=>\(x^2+y^2+z^2=0\)
mà \(x^2\ge0\forall x;y^2\ge0\forall y;z^2\ge0\forall z\)
nên \(\begin{cases}x=0\\ y=0\\ z=0\end{cases}\)
\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}\)
\(=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}\)
=-1+0+1
=0

\(\frac{2023\times2024+2025}{2024\times2025-2025}\)
\(=\frac{2024\times\left(2025-2\right)+2025}{2024\times2025-2025}\)
\(=\frac{2024\times2025-2023}{2024\times2025-2025}\)

Ta có: \(\left(2x-1\right)^{2024}\ge0\)
\(\left|x+y+1\right|\ge0\) nên \(\left|x+y+1\right|^{2025}\ge0\)
Suy ra: \(\left(2x-1\right)^{2024}+\left|x+y+1\right|^{2025}\ge0\)
Dấu "=" xảy ra khi và chỉ khi:
\(\begin{cases}2x-1=0\\ x+y+1=0\end{cases}\rArr\begin{cases}2x=1\\ x+y=-1\end{cases}\rArr\begin{cases}x=\frac12\\ y=-1-\frac12=-\frac32\end{cases}\)
Vậy: \(x=\frac12;y=-\frac32\)
2x−1)2024≥0 vì lũy thừa bội/chẵn của một số cho kết quả không âm
\(\mid x + y + 1 \mid^{2025} = \left(\right. \mid x + y + 1 \mid \left.\right)^{2025} \geq 0\) vì giá trị tuyệt đối không âm, mũ lẻ hay chẵn đều không làm nó âm
Nếu tổng của hai số không âm bằng \(0\) thì mỗi số phải bằng \(0\) (nếu một trong hai dương thì tổng > 0 — mâu thuẫn)
Vậy
\(\left(\right. 2 x - 1 \left.\right)^{2024} = 0 \Rightarrow x = \frac{1}{2} ,\) \(\mid x+y+1\mid^{2025}=0\Rightarrow\mid x+y+1\mid=0\Rightarrow y=-x-1\)Thay \(x = \frac{1}{2}\) được \(y = - \frac{3}{2}\)
vậy
\(\left(\right.x,y\left.\right)=\left(\right.\frac{1}{2},\textrm{ }-\frac{3}{2}\left.\right)\)

1) Ta thấy:
\(4=1+3=1+\sqrt{9}\)
\(1+2\sqrt{2}=1+\sqrt{2^2\cdot2}=1+\sqrt{8}\)
Mà: \(\sqrt{8}< \sqrt{9}\)
\(\Rightarrow1+\sqrt{8}< 1+\sqrt{9}\)
\(\Rightarrow\dfrac{1}{1+\sqrt{8}}>\dfrac{1}{1+\sqrt{9}}\)
\(\Rightarrow\dfrac{1}{1+2\sqrt{2}}>\dfrac{1}{4}\)
2) Ta thấy:
\(2018< 2024\)
\(\Rightarrow\sqrt{2018}< \sqrt{2024}\) (1)
\(2025< 2026\)
\(\Rightarrow\sqrt{2025}< \sqrt{2026}\) (2)
Từ (1) và (2) ta có:
\(\sqrt{2018}+\sqrt{2025}< \sqrt{2024}+\sqrt{2026}\)

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110
`2024x(x-2024/2025)=0`
`=> 2024x= 0` hoặc `x - 2024/2025 = 0`
`=> x = 0 : 2024` hoặc `x = 0 + 2024/2025`
`=> x = 0` hoặc `x = 2024/2025`
Vậy: `x= 0; x = 2024/2025`