cho \(\frac{a}{b}=\frac{b}{x+1}=\frac{c}{x+2}\)
CMR \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)
giúp mik vs mik rất cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x+\frac{1}{2}\right|=\frac{1}{3}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{3}\\x+\frac{1}{2}=-\frac{1}{3}\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{6}\\x=-\frac{5}{6}\end{cases}}\)
Vậy....
b) \(\left|x-\frac{1}{2}\right|=\frac{1}{3}-\frac{1}{2}\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{2}\right|=-\frac{1}{6}\) vô lí do \(\left|a\right|\ge0\)
Vậy pt vô nghiệm
c) \(\left|x+\frac{1}{3}\right|-4=-1\)
\(\Leftrightarrow\)\(\left|x+\frac{1}{3}\right|=3\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+\frac{1}{3}=3\\x+\frac{1}{3}=-3\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{8}{3}\\x=-\frac{10}{3}\end{cases}}\)
Vậy..
d) \(\left|x-\frac{1}{5}\right|+\frac{1}{3}=\frac{1}{4}-\left|-\frac{3}{2}\right|\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{5}\right|+\frac{1}{3}=-\frac{5}{4}\)
\(\Leftrightarrow\)\(\left|x-\frac{1}{5}\right|=-\frac{19}{12}\)vô lí do \(\left|a\right|\ge0\)với mọi a
Vậy pt vô nghiệm
e) \(\left|x-\frac{5}{2}\right|=\frac{4}{3}-\left(\frac{2}{3}-\frac{1}{2}\right)\)
\(\Leftrightarrow\)\(\left|x-\frac{5}{2}\right|=\frac{7}{6}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-\frac{5}{2}=\frac{7}{6}\\x-\frac{5}{2}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\frac{2}{3}\\x=\frac{4}{3}\end{cases}}\)
Vậy...
a) \(P=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
Đặt \(x=\frac{b}{c-a},y=\frac{c}{a-b},z=\frac{a}{b-c}\) , suy ra : \(P=-xy-yz-xz\)
Lại có : \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Rightarrow xy+yz+xz=-1\Rightarrow P=1\)
\(Q=\frac{\left[\left(x+\frac{1}{x}\right)^2\right]^3-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)
\(=3x+\frac{3}{x}=3\left(x+\frac{1}{x}\right)\)
MTC: \(abc\left(a-b\right)\left(b-c\right)\left(a-c\right)\)nên
\(A=\frac{bc\left(b-c\right)\left(a-2\right)\left(a-1014\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{ac\left(a-c\right)\left(b-2\right)\left(b-1004\right)}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)\left(c-2\right)\left(c-1004\right)}{abc\left(a-c\right)\left(a-b\right)\left(b-c\right)}\)
\(=\frac{2008b^2c+2008a^2c+2008a^2b-2008bc^2-2008a^2c-2008ab^2}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{2008\left[\left(c^2a-c^2b\right)+\left(a^2b-a^2c\right)+\left(b^2a-b^2c\right)\right]}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{2008\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{2008}{abc}\) ( với \(abc\ne0\))
a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)
\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)
\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)
\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)
b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)
c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)
\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2\)\(=\frac{\left(a+b\right).\left(a+b\right)}{\left(c+d\right).\left(c+d\right)}\)\(=\frac{a.a+b.b}{c.c+d.d}\)\(=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\).