K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2021

a) Xét ∆ADB và ∆AEC có:

          AB=AC (gt)
       góc ABD= góc ACE (gt)

         BD=CE(gt)

=>∆ADB=∆AEC(c.g.c0

=>AD=AC (2 cạnh tương ứng)

=>∆ADE là ∆cân tại A

b)Xét ∆BHD và ∆CKE có:

          góc BHD=góc EHC=90

          BD=CE(gt)
          góc B=góc C(gt)

=>∆BHD=∆CKE(cạnh huyền góc nhọn)

=>DH=EK(2 cạnh tương ứng)(đpcm)

c)∆BHD=∆CKE(cmt) =>góc HDB =góc KEC (2cạnh tương ứng)

mà ∠HDB=∠EDO( đối đỉnh), ∠KEC=∠DEO(đối đỉnh)

=>∠EDO=∠DEO =>∆ODE cân tại O (đpcm)
 

         

5 tháng 4 2021

mị xong đầu tiên    

a: Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc B=góc C

=>ΔBHD=ΔCKE

=>HD=EK

b: Xét ΔAHD vuông tại H và ΔAKE vuông tại K có

AH=AK

HD=EK

=>ΔAHD=ΔAKE

=>AD=AE

25 tháng 3 2023

cũng đúng nhưng câu c đâu ạ

a: Xét ΔAEB và ΔADC có

AE=AD
\(\widehat{BAE}\) chung

AB=AC

Do đó; ΔAEB=ΔADC

=>EB=DC

b: Ta có: ΔAEB=ΔADC

=>\(\widehat{ABE}=\widehat{ACD}\)

Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

=>\(\widehat{BDC}=\widehat{CEB}\)

Xét ΔKDB và ΔKEC có

\(\widehat{KDB}=\widehat{KEC}\)

DB=EC

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

c: Ta có: ΔKDB=ΔKEC

=>KB=KC

Xét ΔABK và ΔACK có

AB=AC

BK=CK

AK chung

Do đó: ΔABK=ΔACK

=>\(\widehat{BAK}=\widehat{CAK}\)

=>AK là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AK là đường phân giác

nên AK là đường cao

=>AK\(\perp\)BC

e: Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

29 tháng 11 2021

Tham Khảo nha bạn :

https://olm.vn/hoi-dap/detail/21858656221.html

A C B D E H K I 2 1

a, Ta có : \(\Delta\)ABC cân tại A (gt)

\(\Rightarrow\)Góc B = góc \(C_1\)

Mà góc \(C_1=C_2\)(đối đỉnh)

\(\Rightarrow\)Góc B = góc \(C_2\)

Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :

BD=CE (gt)

Góc B = góc C\(_2\)(cmt)

\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)

\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)

Vậy...

b, Ta có : DH và EK cùng vuông góc vs BC (gt)

\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)

\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )

Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :

DH=CE (\(\Delta BEH=\Delta CEK\))

Góc HDI = góc IEC (cmt)

\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)

\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )

Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )

\(\Rightarrow\)I là trung điểm của BC

Vậy...

Chúc bn hok tốt

7 tháng 6 2019

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D