K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.

Xét tam giác IHK và tam giác ECK có:

IHK = ECK (=90)

KH = KC (K là trung điểm của HC)

K1 = K2 (2 góc đối đỉnh)

=> Tam giác IHK = Tam giác ECK (c.g.c) (1)

=> IH = CE (2 cạnh tương ứng) (2)

b.

Tam giác IHK = Tam giác ECK (theo 1)

=> HIK = CEK (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong

=> AH // CE 

=> AIC = ICE (2 góc so le trong) (3)

IH = CE (theo 2)

mà IH = IA (I là trung điểm của HA)

=> IA = CE (4)

Xét tam giác ACI và tam giác EIC có:

IA = CE (theo 4)

IC là cạnh chung

AIC = ECI (theo 3)

=> Tam giác ACI = Tam giác EIC (c.g.c) (5)

c.

Tam giác ACI = Tam giác EIC (theo 5)

=> AC = EI (2 cạnh tương ứng) (6)

=> ACI = CIE (2 góc tương ứng) mà 2 góc này nằm ở vị trì so le trong

=> IK // AC

Tam giác IHK = Tam giác ECK (theo 1)

=> IK = EK (2 cạnh tương ứng)

=> K là trung điểm của IE

=> IK = EK = 1/2 IE

mà AC = IE (theo 6)

=> IK = 1/2 AC

8 tháng 4 2016

Trả lời giúp mình với

12 tháng 4 2017

a) xét tam giác IHK và tam giác ECK,có

HK=KC( gt)

góc IHK= góc ECK=90 độ

IHK=EKC( đối đỉnh)

--> tam giác IHK= tam giác ECK ( g.c.g)

--> IH=EC ( 2 cạnh tương ứng)

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

3 tháng 3 2020

A B C H K E N M a, ^BAC + ^BAK = 180 (kề bù)

^BAC = 135 (gt)

=> ^BAK = 45

xét ΔAKB có : ^AKB = 90

=> ΔAKB vuông cân  (dấu hiệu)

b, ^KBC = 90 - ^KCB 

^CAH = 90 - ^ACH 

=> ^CAH = ^ABK 

^CAH = ^KAE (đối đỉnh)

=> ^ABK = ^KAE 

xét ΔAKE và ΔBKC có : ^CKB = ^AKE = 90

AK = KB do ΔAKB cân tại K (câu a)

=> ΔAKE = ΔBKC (cgv-gnk)

=> AE = BC (định nghĩa)

c, kẻ MK

xét ΔMNE và ΔMNK có : MN chung

^MNE = ^MNK = 90 

NE = NK do N là trung điểm của EK (Gt)

=> ΔMNE = ΔMNK (2cgv)

=> MN = MK (định nghĩa)                                            (1)

      ^EMN = ^KMN (định nghĩa)                                     (2)

MN ⊥ BE ; CK ⊥ BE => MN // CK (định lí)

=> ^EMN = MCK (đồng vị)

     ^NMK = ^MKC (so le trong)

và (2)

=> ^MCK = ^MKC 

=> ΔMKC cân tại M (dấu hiệu)

=> MK = MC (định nghĩa)   và (1)

=> ME = MC mà M nằm giữa C và E

=> M là trung điểm của EC

a:

Xét ΔKIH vuông tại H và ΔKEC vuông tại C có

KH=KC

\(\widehat{HKI}=\widehat{CKE}\)

Do đó: ΔKIH=ΔKEC
Suy ra:IH=EC

b: Xét ΔACI và ΔEIC có

AC=EI

CI chung

AI=EC

Do đó: ΔACI=ΔEIC

c: 

 Xét ΔHAC có

K là trung điểm của HC

I là trung điểm của HA

Do đó: KI là đường trung bình

=>KI//AC và KI=AC/2