Tìm UWCLN (7n + 3; 8n - 1) với n thuộc N sao. Khi nào thì hai số nguyên tố cùng nhau?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=ƯCLN(7n+3,8n-1)\)
\(\Rightarrow \begin{cases} 7n+3\vdots d\\ 8n-1\vdots d \end{cases}\\ \Rightarrow 8(7n+3)-7(8n-1)\vdots d\\ \Rightarrow 56n+24-56n+7\vdots d\\ \Rightarrow 31\vdots d\)
Mà \(d\) lớn nhất \(\Rightarrow d=31\)
Vậy \(ƯCLN(7n+3,8n-1)=31\)
Ta có: 1+2+3+...+n = n(n+1)/2
Gọi d = ƯCLN ( n(n+1)/2, 2n+1) ( d thuộc N*)
=> n(n+1)/2 chia hết cho d, 2n+1 chia hết cho d
=> n(n+1) chia hết cho d, 2n+1 chia hết cho d
=> n2+n chia hết cho d, n.(2n+1) chia hết cho d
=> n2+n chia hết cho d, 2n2+n chia hết cho d
=> (2n2+n) - (n2+n) chia hết cho d
=> 2n2+n-n2-n chia hết cho d
=> n2 chia hết cho d
Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d
=> n chia hết cho d
=> 2n chia hết cho d
Mà 2n+1 chia hết cho d => (2n+1)-2n chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN ( n(n+1)/2, 2n=1) = 1
Vậy ƯCLN của 1+2+3+...+n và 2n+1 bằng 1 với n thuộc N*
Bạn nên xem lại đề vì 61440 ms làm đc
Tích của a/32 với b/32 là:
61440 : 32 : 32= 60.
Chắc chắn a/32 và b/32 sẽ nguyên tố cùng nhau vì ước chung ln của chúng là 32.
Vậy a là 5.32=160 và b là 12.32=384
35= 5.7
84= 22.3.7
56= 23.7
=> ƯCLN( 35;84;56)=7
BCNN( 35;84;56)= 23.3.5.7=840
ƯCLN chứ không phải UWCLN, mình nói nhầm.
Gọi d là ƯC(7n + 3, 8n – 1). Suy ra:
7n + 3 ⋮ d và 8n – 1⋮d
=> 56n + 24 ⋮d và 56n – 7 ⋮ d
=> 31 ⋮ d
=> d ∈ {1; 31}Nếu 7n + 3 ⋮ 31
=> 7n + 3 – 31 ⋮ 31
=> 7n – 28 ⋮ 31
=> 7.(n – 4) 31, vì: (7, 31) = 1
=> n – 4 ⋮ 31
=> n – 4 = 31k (Với k thuộc N)
=> n = 31k + 4
Thay vào 8n – 1 = 8.(31k + 4) – 1
= 8.31k + 31
= 31.(8k + 1) 31
.=> UCLN(7n + 3, 8n – 1) = 31 nếu n = 31k + 4 (Với k thuộc N).
Với n ≠ 31k + 4 thì UCLN(7n + 3, 8n – 1) = 1 (Với k thuộc N).
Để hai số 7n + 3 và 8n – 1 là hai số nguyên tố cùng nhau
<=> UCLN(7n + 3, 8n – 1) = 1
<=> n ≠ 31k + 4 (Với k thuộc N).
Kết luận:+) Với n = 31k + 4 thì UCLN(7n + 3, 8n – 1) = 31 (Với k thuộc N)
+) Với n ≠ 31k + 4 thì UCLN(7n + 3, 8n – 1) = 1 (Với k thuộc N)+)
Với n ≠ 31k + 4 thì hai số 7n + 3 và 8n – 1 là hai số nguyên tố cùng nhau.