Cho hình thoi ABCD có hai đường chéo cắt nhau tại H.Gọi M là trung điểm của AB,N là trung điểm của AD.a)Tứ giác AMHN là hình gì?Tại sao?.b)Lấy điểm K đối xứng với H qua M.Tứ giác AKBH là hình gì?Vì sao?c)NH cắt BC tại I,tứ giác MKBI là hình gì?Tại sao.d)MC rằng các đường thẳng MC,KI chia đoạn thẳng BH thành ba phần bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHBK có
M là trung điểm của AB
M là trung điểm của HK
Do đó: AHBK là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBK là hình chữ nhật
b:
Xét tứ giác AKHC có
AK//HC
AK=HC
Do đó: AKHC là hình bình hành
c: Xét ΔABC có
N là trung điểm của AC
H là trung điểm của BC
Do đó: NH là đường trung bình
=>NH//AB và NH=AB/2
hay NH//AM và NH=AM
=>AMHN là hình bình hành
mà AM=AN
nên AMHN là hình thoi
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a: Ta có: H và P đối xứng nhau qua BC
nên HP⊥BC tại D
và D là trung điểm của HP
Xét ΔHPQ có
D là trung điểm của HP
M là trung điểm của HQ
Do đó: DM là đường trung bình của ΔHPQ
Suy ra: PQ//BC
a)
Ta có: MB = MC; MA = MD (gt)
⇒ Tứ giác ABDC là hình bình hành
Mà: ∠A = 90°
⇒ Tứ giác ABDC là hình chữ nhật (đpcm)
b)
Gọi O là giao điểm của AC và AE
ΔAED có: OA = OE (E đối xứng với A qua BC); MA = MD (gt)
⇒ OM là đường trung bình của ΔAED
⇒ OM // ED (1)
Vì: E đối xứng với A qua BC
⇒ BC là đường trung trực của AE
⇒ BC ⊥ AE hay OM ⊥ AE (2)
Từ (1), (2) ⇒ ED ⊥ AE (đpcm)
c)
Ta có: BC // ED (OM // ED)
⇒ Tứ giác BEDC là hình thang
Ta có: BD = AC (Tứ giác ABDC là hình chữ nhật) (a)
ΔAEC có: CO vừa là đường trung tuyến vừa là đường cao
⇒ ΔAEC cân tại C ⇒ CA = CE (b)
Từ (a), (b) ⇒ BD = EC
Hình thang BEDC có: BD = EC
⇒ Tứ giác BEDC là hình thang cân
a: Xét ΔABC có
M là trung điểm của BC
I là trung điểm của AB
Do đó: MI là đường trung bình
=>MI=AC/2
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do dó: AMCK là hình chữ nhật
b: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
AB=AC
Do đó: ABEC là hình thoi