chứng tỏ rằng:
102002 + 8 chia hết cho 3 và 9
mình cần gấp .giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10^{28}+8\)
\(=1000...0000+8\)
28 chữ số 0
\(=100...008\)
27 chữ số 0
Ta có 1+0+0+...+0+8=9\(⋮\)9=>1028+9\(⋮\)9
vậy........
Chứng minh rằng:
a) Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2 và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9
Vậy 102002 +8 chia hết cho 2 và 9.
b) Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hết cho 2
và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3
Vậy 102004 +14 chia hết cho 2 và 3.
a)Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
b)
Hai số chẵn liên tiếp có dạng 2a và 2a+2.Ta có
2ax(2a+2)=4ax(a+1)chia hết cho 4.Suy ra 2a hoặc 2a+2 phải chia hết cho 4 mặt khác 2a+2a+2 = 4a+2 ko chia hết cho 4.
.Vậy nếu 2a chia hết cho 4 thì 2a+2 ko chia hết cho 4 ngược lai nếu 2a+2 chia hết cho 4 thì 2a ko chia hết cho 4.
Vậy trong 2 số chẵn liên tiếp chỉ có 1 số chia hết cho 4.
\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)
\(=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)
\(=3+2^2.3+...+2^{2020}.3⋮3\)
VẬY \(S⋮3\)
Trả lời :...........................................
SCSH: (2021 - 1) : 1 = 2020
Tổng: (2021 + 1) : 2 = 1011
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé
Bài này không hoàn toán đúng bạn a! Lây ví dụ X=1; y=1 thí 38X +Y chia hết cho 13, nhưng 36X - 11Y = 25 không chia hết cho 13
\(Y=1+3+3^2+3^3+.......+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.........+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+......+3^{96}.\left(1+3+3^2\right)\)
\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+.........+3^{96}.\left(1+3+9\right)\)
\(=13+3^3.13+.......+3^{96}.13\)
\(=13.\left(1+3^3+.......+3^{96}\right)⋮13\)( đpcm )
Y = 1 + 3 + 32 + 33 + ... + 398
= ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 396 + 397 + 398 )
= 13 + 33( 1 + 3 + 32 ) + ... + 396( 1 + 3 + 32 )
= 13 + 33.13 + ... + 396.13
= 13( 1 + 33 + ... + 396 ) chia hết cho 13 ( đpcm )
Ta có:
\(10^{2002}+8=100...00+8\) (có 2002 chữ số 0)
Tổng của các chữ số là:
\(1+0+0+...+0+0+8=9\)
Vì: \(9⋮3;9⋮9\)
\(\rightarrow10^{2002}+8⋮3,9\left(đpcm\right)\)
\(10^{2002}\)\(+8\)\(=100...0+8=100...8\) (100..8 có 2001số 0)
tổng các chữ số đó là:
1+0+0+...+8=9 và 9⋮9 và 9⋮3
nên \(10^{2002}+8\)⋮3 và 9
k cho mk nha