Gieo một con súc sắc cân đối đồng chất hai lần.
a) Tính xác suất để tổng số chấm 2 lần gieo bằng 8
b) Tính xác suất để tổng số chấm 2 lần gieo bằng 9
c) Tính xác suất tổng hai số chấm 2 lần gieo nhỏ hơn 4
các bạn giải cho mình theo cách lớp 7 nhé . đây là đề thi HSG của mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Tung con súc sắc 2 lần, mỗi lần có trường hợp xảy ra ⇒ K G M : n Ω = 6.6 = 36
Có4 trường hợp xuất hiện số chấm của 2 lần gieo bằng 9 là: 3 ; 6 ; 4 ; 5 ; 5 ; 4 ; 6 ; 3
Vậy xác suất để tổng số chấm của 2 lần gieo bằng 9 là: 4 36 = 1 9
Đáp án D
Tung con súc sắc 2 lần, mỗi lần có 6 trường hợp xảy ra => KGM: n Ω = 6.6 = 36
Có 4 trường hợp xuất hiện số chấm của 2 lần gieo bằng 9 là: (3;6); (4;5); (5;4); (6;3)
Vậy xác suất để tổng số chấm của 2 lần gieo bằng 9 là: 4 36 = 1 9
Đáp án A
Phương trình có nghiệm
.
Do m là tổng số chấm sau 2 lần gieo súc sắc nên .
Do đó
Các trường hợp có tổng số chấm thỏa mãn yêu cầu bài toán là
.
Số trường hợp của không gian mẫu là .
Vậy xác suất cần tính là .
Xác suất:
a. \(\dfrac{3}{6}.\dfrac{3}{6}=\dfrac{1}{4}\)
b. \(\dfrac{6}{36}=\dfrac{1}{6}\)
c. Xác suất mặt 6 chấm ko xuất hiện lần nào: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)
Xác suất mặt 6 xuất hiện ít nhất 1 lần: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)
d. Các trường hợp tổng 2 mặt lớn hơn hoặc bằng 10: (6;4), (4;6); (5;5); (5;6);(6;5);(6;6) có 6 khả năng
\(\Rightarrow36-6=30\) khả năng tổng số chấm bé hơn 10
Xác suất: \(\dfrac{30}{36}=\dfrac{5}{6}\)
Rõ ràng \(\Omega=\left\{\left(i;j\right):1\le i,j\le6\right\}\)
Kí hiệu :
\(A_1:\) "Lần đầu xuất hiện mặt 1 chấm"
\(B_1:\) "Lần thứ hai xuất hiện mặt 1 chấm"
\(C:\) " Tổng số chấm là 6"
\(D:\) "Mặt 1 chấm xuất hiện ít nhất một lần"
a) Ta có \(C=\left\{\left(1,5\right),\left(5,1\right),\left(2,4\right),\left(4,2\right)\left(3,3\right)\right\},P\left(C\right)=\dfrac{5}{36}\)
b) Ta có \(A_1,B_1\) độc lập và \(D=A_1\cup B_1\) nên
\(P\left(D\right)=P\left(A_1\right)+P\left(B_1\right)-P\left(A_1B_1\right)\)
\(=\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{6}.\dfrac{1}{6}=\dfrac{11}{36}\)
Đáp án A.
Số phần tử của không gian mẫu là Gọi A là biến cố thỏa yêu cầu bài toán.
Phương trình có nghiệm khi và chỉ khi
Xét bảng kết quả sau (L – loại, không thỏa; N – nhận, thỏa yêu cầu đề bài):
Dựa vào bảng kết quả trên ta thấy số kết quả thuận lợi cho A là 19.
Vậy xác suất của biến cố A là
\(\Omega=\left\{\left(1;1\right);\left(1;2\right);...;\left(6;6\right)\right\}\)
=>\(n\left(\Omega\right)=36\)
a: Gọi A là biến cố "Tổng số chấm 2 lần gieo bằng 8"
=>A={(2;6);(3;5);(4;4);(5;3);(6;2)}
=>n(A)=5
=>\(P_A=\dfrac{5}{36}\)
b: Gọi B là biến cố "Tổng số chấm 2 lần gieo bằng 9"
=>B={(3;6);(4;5);(5;4);(6;3)}
=>n(B)=4
\(P_B=\dfrac{4}{36}=\dfrac{1}{9}\)
c: Gọi C là biến cố "Tổng số chấm 2 lần gieo nhỏ hơn 4"
=>C={(1;1);(1;2);(2;1)}
=>n(C)=3
\(P_C=\dfrac{3}{36}=\dfrac{1}{12}\)
https://chatgpt.com/
bạn paste cái bài của bạn vào đây giải siu nhanh luôn