K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

Nhân biểu thức liên họp từng só vào phương trình

\((x-\sqrt{x^2+1})(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=x-\sqrt{x^2+1} \)

<=>\(y+\sqrt{y^2+1}=x-\sqrt{x^2+1} \)

Cmtt=>\(x+\sqrt{x^2+1}=y-\sqrt{y^2+1} \)

Trừ vế với vế=> 2(x-y)=0

<=> x-y=0

<=>x=y

=> M=\(18x^4-15x^2+6x^2+5x^2+2017\)

= \(18x^4-4x^2+2017\)

=\(2(9x^4-2x^2+\frac{1}{9} )+2017-\frac{2}{9} \)

=\(2(3x^2-\frac{1}{3})^2+2017-\frac{2}{9} \)

Min M= \(2017-\frac{2}{9} \)<=>\(3x^2=\frac{1}{3} \)

<=>\(x^2=\frac{1}{9} \)

<=>x=y=\(+-\frac{1}{3} \)

NV
18 tháng 9 2021

Sau vài phút cố gắng thì khẳng định đề bài của em bị sai

NV
18 tháng 9 2021

Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:

\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)

\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)

Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)

Cộng vế:

\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)

\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)

1 tháng 4 2019

xàm loz

16 tháng 4 2021

undefinedundefined