cho x, y\(\in R\)thoa man \(\left(X+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Tim min, max cua M=\(10x^4+8y^4-15xy+6x^2+5y^2+2017\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân biểu thức liên họp từng só vào phương trình
\((x-\sqrt{x^2+1})(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=x-\sqrt{x^2+1} \)
<=>\(y+\sqrt{y^2+1}=x-\sqrt{x^2+1} \)
Cmtt=>\(x+\sqrt{x^2+1}=y-\sqrt{y^2+1} \)
Trừ vế với vế=> 2(x-y)=0
<=> x-y=0
<=>x=y
=> M=\(18x^4-15x^2+6x^2+5x^2+2017\)
= \(18x^4-4x^2+2017\)
=\(2(9x^4-2x^2+\frac{1}{9} )+2017-\frac{2}{9} \)
=\(2(3x^2-\frac{1}{3})^2+2017-\frac{2}{9} \)
Min M= \(2017-\frac{2}{9} \)<=>\(3x^2=\frac{1}{3} \)
<=>\(x^2=\frac{1}{9} \)
<=>x=y=\(+-\frac{1}{3} \)
Sau vài phút cố gắng thì khẳng định đề bài của em bị sai
Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:
\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)
\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)
Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)
Cộng vế:
\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)