Tính: A = x2.y2.z2
Biết x,y,z là các số thực thỏa mãn:
\(\dfrac{1}{x^2\left(y-z\right)}\)=\(\dfrac{-3}{5}\)
\(\dfrac{1}{y^2\left(z-x\right)}\)=\(\dfrac{1}{3}\)
\(\dfrac{1}{z^2\left(x-y\right)}\)= 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x^2\left(y-z\right)}=-\dfrac{3}{5}\Rightarrow x^2=-\dfrac{5}{3\left(y-z\right)}\)
\(\dfrac{1}{y^2\left(z-x\right)}=\dfrac{1}{3}\Rightarrow y^2=\dfrac{3}{\left(z-x\right)}\)
\(\dfrac{1}{z^2\left(x-y\right)}=3\Rightarrow z^2=\dfrac{1}{3\left(x-y\right)}\)
\(A=x^2.y^2.z^2=-\dfrac{5}{3\left(y-z\right)}.\dfrac{3}{z-x}.\dfrac{1}{3\left(x-y\right)}=\)
\(=-\dfrac{5}{3}.\dfrac{1}{\left(y-z\right)\left(z-x\right)\left(x-y\right)}=\)