K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

Là Sao bạn ???

a) Ta có: ABCD là hình vuông

nên DB là tia phân giác của \(\widehat{ADC}\)

\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)

hay \(\widehat{FDM}=45^0\)

Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)

nên ΔMFD vuông cân tại F

Suy ra: FM=FD(1)

Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AFM}=90^0\)

\(\widehat{AEM}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AE=MF(2)

Từ (1) và (2) suy ra AE=DF

Xét ΔAED vuông tại A và ΔDFC vuông tại F có 

AE=DF

AD=DC

Do đó: ΔAED=ΔDFC

Suy ra: DE=CF

8 tháng 8 2021

a, AEMF là hình chữ nhật nên AE=FM

ΔDFM vuông cân tại suy ra FM=DF

⇒AE=DFsuy ra ΔADE=ΔDCF

⇒DE=CF

 

b, Tương tự câu a, dễ thấy AF=BE

⇒ΔABF=ΔBCE

⇒ABF^=BCE^ nên BF vuông góc CE

Gọi là giao điểm của BFvà DE

⇒H là trực tâm của tam giác CEF

Gọi là giao điểm của BCvà MF

CN=DF=AEvà MN=EM=AF

ΔAEF=ΔCMN

⇒ˆAEF=ˆMCN

⇒CM⊥EF

9 tháng 8 2021

a) AEMF là hình chữ nhật nên AE=FM

\(\Delta DFM\) vuông cân tại suy ra FM=DF

⇒AE=DF suy ra ΔADE=ΔDCF(c.g.c)

⇒DE=CF

Gọi \(DE\cap CF=H\)

Ta có ΔADE=ΔDCF(c.g.c)

\(\Rightarrow\widehat{ADE}=\widehat{DCF}\)

\(\Rightarrow\widehat{ADE}+\widehat{DFH}=\widehat{DCF}+\widehat{DFH}=90\)

\(\Rightarrow\Delta FHD\) vuông tại H

\(\Rightarrow CF\perp DE\)

9 tháng 8 2021

b) Kẻ thêm AM

Ta được AM=EF (AEMF là hcn)

Dễ thấy \(\Delta ADM=\Delta CDM\left(c.g.c\right)\)

(do AD=DC; DM chung; góc ADM = góc CDM)

Nên AM=CM, mà AM=EF

Vậy CM=EF

Gọi \(EM\cap CD=N;CM\cap EF=I\)

Dễ chứng minh \(\Delta AEM=\Delta NMC\left(c.g.c\right)\)

(AE=MN; EM=NC; góc AEM = góc MNC)

Nên góc MAE = góc CMN = góc IME (đối đỉnh)

Mà \(\widehat{MAE}+\widehat{AME}=90\) nên \(\widehat{IME}+\widehat{AME}=90\)

Suy ra \(\widehat{IME}+\widehat{IEM}=90\) (\(\widehat{AME}=\widehat{MEI}\))

\(\RightarrowĐPCM\)

 

24 tháng 2 2018

Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.