K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

Đặt \(A=2^1+2^2+...+2^{108}\)

\(\Rightarrow2A=2^2+2^3+...+2^{109}\)

\(\Rightarrow A=2^{109}-2\)

Ta có \(A=2^{109}-2^{106}+2^{106}-2^{103}+2^{103}-2^{100}+...+2^4-2\)

\(=2^{106}\left(2^3-1\right)+2^{103}\left(2^3-1\right)+...+2\left(2^3-1\right)\)

\(=7\left(2^{106}+2^{103}+...+2\right)⋮7\)

Vậy A chia hết cho 7.

23 tháng 3 2019

Ta có : 21+22+23+24+.....+2108=

=( 21+22+23 )+( 24+25+26 )+.....+( 2106+ 2107+2108 )

=21 ( 1+2+4 )+24 ( 1+2+4 )+.....+2106( 1+2+4 )

=21 .7+24 .7+....+2106. 7

=7 ( 21+24+......+2106 ) \(⋮\)7

Vậy 21+23+24+....+2108\(⋮\)7

\(⋮\)

23 tháng 10 2021

\(A+2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)

23 tháng 10 2021

\(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=2\cdot3+...+2^{99}\cdot3\)

\(=6\left(1+...+2^{99}\right)⋮6\)

19 tháng 3 2021

Ta có : 

\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=2.3+2^3.3+....+2^{2009}.3\)

\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)

Ta có :

\(2+2^2+2^3+2^4+....+2^{2010}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+....+2^{2008}.7\)

\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)

Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

4 tháng 1

c) \(55-7.\left(x+3\right)=6\)

\(7.\left(x+3\right)=55-6\)

\(7.\left(x+3\right)=49\)

\(x+3=49:7\)

\(x+3=7\)

\(x=7-3\)

\(x=4\)

d) \(-14-x+\left(-15\right)=-10\)

\(-29-x=-10\)

\(x=-29+10\)

\(x=-19\)

-----------------------------

Số số hạng của A:

\(60-1+1=60\) (số)

Do \(60⋮6\) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 6 số hạng như sau:

\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4+2^5\right)+2^7.\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}.\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(=2.63+2^7.63+...+2^{55}.63\)

\(=63.\left(2+2^7+...+2^{55}\right)\)

\(=21.3.\left(2+2^7+...+2^{55}\right)⋮21\)

Vậy \(A⋮21\)

4 tháng 1

55-7(x+3)=6

7(x+3)=55-6=49

(x+3)=49:7=7

x=7-3=4

(-14)-x + (-15)=-10

(-14)-x=-10-15=-25

x           =-14-25=-39 

A chia hết 31 chứ

A=2(1+2)+2^3(1+2)+...+2^2009(1+2)

=3(2+2^3+...+2^2009) chia hết cho 3

A=2(1+2+2^2)+2^4(1+2+2^2)+...+2^2008(1+2+2^2)

=7(2+2^4+...+2^2008) chia hết cho 7

24 tháng 8 2021

A = 20 + 21 + 22 + 2+ 24 + 25 … + 299

A=( 20 + 21 + 22 + 2+ 24) +( 25 … + 299)

A= 20.(20 + 21 + 22 + 2+ 24)+25.( 25 … + 299)

A= 1. 31+ 25.31… + 295.31

A= 31. (1+25...+295)

KL: ...... 

24 tháng 8 2021

\(A=2^0+2^1+2^2+2^3+2^4+...+2^{99}=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)

25 tháng 12 2021

\(A=1+2+2^2+2^3+....+2^{98}+2^{99}\\ \Leftrightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+....+\left(2^{98}+2^{99}\right)\\ \Leftrightarrow A=3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+....+2^{98}.\left(1+2\right)\\ \Leftrightarrow A=3+3.2^2+3.2^4+....+3.2^{98}\\ \Leftrightarrow A=3.\left(1+2^2+2^4+...+2^{98}\right)⋮3\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu 1: 

$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$

$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$

$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$

-----------------

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$

$=2+7(2^2+2^5+...+2^{2018})$

$\Rightarrow A$ chia $7$ dư $2$.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu 2:

$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$

$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$

-------------------

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$

$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

28 tháng 2 2022

Đề sai, viết lại thành:

A= 21+22+23+24+...+259+260

Giải:

A=21+22+23+...............+259+260

A=(21+22+23)+...............+(258+259+260)

A=2.(1+2+22)+............+258.(1+2+22)

A=2.7+.......................+258.7

A=(2+24+..............+258).7 ⋮ 7(đpcm)

28 tháng 2 2022

umk

28 tháng 12 2022

loading...