K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

Mình làm nhé ( đây là theo mình nghĩ chứ mình ko biết đúng hay sai )

a ) S = 30 + 31 + 32 + ........ + 32002

\(\Rightarrow3S=3+3^2+3^3+......+3^{2003}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+......+3^{2003}\right)-\left(1+3^1+3^2+.......+3^{2002}\right)\)

\(\Rightarrow2S=3^{2003}-1\)

\(\Rightarrow S=\frac{3^{2003}-1}{2}\)

Vậy \(S=\frac{3^{2003}-1}{2}\)

b ) đề bài sai mong bạn xem lại

2 tháng 11 2017

Nếu các bạn nào ko hiểu thì copy trên mạng và chỉ cho mình copy ở đâu

31 tháng 10 2023

Đề sai rồi bạn

4 tháng 12 2016

các bạn ơi giại hộ minh bài này với

20 tháng 10 2017

Sao Cũng Được

Trả lời

13

Đánh dấu

13/06/2015 lúc 12:46

Cho : S = 30 + 32 + 34 + 36 + ... + 32002

 a) Tính S 

 b) Chứng minh S chia hết cho 7

Được cập nhật 09/10/2017 lúc 18:34

Toán lớp 6

thien ty tfboys 13/06/2015 lúc 13:06
 Báo cáo sai phạm

a)nhân S với 3ta dc:

9S=3^2+3^4+...+3^2002+3^2004

=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)

=>8S=32004-1

=>S=32004-1/8

b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7

ta có:32004-1=(36)334-1=(36-1).M=7.104.M

=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7

 Đúng 23  Sai 0

bui duc anh 04/04/2016 lúc 21:44
 Báo cáo sai phạm

S= 3^0 +3^2 +3^4 +....+ 3^2002

9S= 3^4 +3^6+.......+3^2004

9S-S=3^2004-1

8S=3^2004-1

S=3^2004-1/8

 Đúng 8  Sai 0

thien ty tfboys 13/06/2015 lúc 13:05
 Báo cáo sai phạm

 S=(30+32+34)+...+(31998+32000+32002)

S= 91+...+31998(1+32+34)

S=91+...+31998.91

S=91(1+36+...+31998)

S=13.7.(1+36+...+31998) chia hết cho 7

 Đúng 6  Sai 0

oOo Lê Việt Anh oOo 18/02/2017 lúc 21:26
 Báo cáo sai phạm

a) 

1 tháng 10 2017

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

22 tháng 2 2023

tự lực mà làm mn đừng chỉ

 

26 tháng 9 2019

a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)

\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)

\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)

\(\Leftrightarrow9S-S=3^{2022}-1\)

\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)

b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)

\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)

\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)

\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)

\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)

=> đpcm

26 tháng 9 2019

Tham khảo :

a, S=30+32+34+36+...+32020S=30+32+34+36+...+32020

32S=32+34+36+38+...+32022⇔32S=32+34+36+38+...+32022

32SS=3202230⇔32S−S=32022−30

9SS=320221⇔9S−S=32022−1

8S=320221S=3202218⇔8S=32022−1⇔S=32022−18

b,S=30+32+34+36+...+32020S=30+32+34+36+...+32020

=(30+32+34)+(36+38+310)+...+(32016+32018+32020)=(30+32+34)+(36+38+310)+...+(32016+32018+32020)

=(1+32+34)+36(1+32+34)+...+32016(1+32+34)=(1+32+34)+36(1+32+34)+...+32016(1+32+34)

=(1+32+34)(1+36+...+32016)=(1+32+34)(1+36+...+32016)

=91(1+36+...+32016)=13.7(1+36+...+32016)7=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (

=> (đpcm)

=>99

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

18 tháng 12 2021

gải giúp mình với