tính các góc của hình thang ABCD ( AB, CD là 2 đáy) biết \(\widehat{A}\) = \(2\widehat{D}\), \(\widehat{B}=\widehat{C}+40^o\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài có ngay ^BDC = ^DBA = 30o. Mà AD = AB nên \(\Delta\)ADB cân tại A.
Do đó ^DBA = ^ADB = 30o. Từ đó suy ra ^D = ^BDC + ^ADB = 30o + 30o = 60o
Mặt khác do AD = BC nên ABCD là hình thang cân do đó ^B = ^D = 60o
Cũng do ABCD là hình thang cân nên ^A = ^B. Mà ^A + ^B + ^C + ^D = 360o (tổng các góc trong tứ giác)
Hay 2 . ^A + 120o = 360o. Từ đó ^A = ^B = 120o
Vậy....
Sai thì chịu nhé:) Nhưng chắc ko sai đâu:v
Bài 2:
Gọi AI là phân giác của góc BAD
Xét ΔDAI có góc DAI=góc DIA
nên ΔDIA cân tại D
=>DA=DI
=>CB=CI
=>ΔCBI cân tại C
=>góc CBI=góc CIB
=>góc CBI=góc ABI
=>BI là phân giác của góc ABC(ĐPCM)
\(a,\) Vì \(AB=AD\) nên tam giác ABD cân tại A
Do đó \(\widehat{ADB}=\widehat{ABD}\)
Mà \(\widehat{ABD}=\widehat{BDC}\left(so.le.trong.vì.AB//CD\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{BDC}\)
Vậy BD là p/g \(\widehat{ADC}\)
\(b,\) Vì ABCD là hình thang cân và BD là p/g nên \(\widehat{ADB}=\widehat{BDC}=\dfrac{1}{2}\widehat{ADC}=\dfrac{1}{2}\widehat{BCD}\)
Mà \(\widehat{BDC}+\widehat{BCD}=90^0\left(\Delta BDC\perp B\right)\)
\(\Rightarrow\dfrac{1}{2}\widehat{BCD}+\widehat{BCD}=90^0\Rightarrow\widehat{BCD}=60^0\)
\(\Rightarrow\widehat{BCD}=\widehat{ADC}=60^0\)
Ta có \(\widehat{BCD}+\widehat{ABC}=180^0\left(trong.cùng.phía.vì.AB//CD\right)\)
\(\Rightarrow\widehat{ABC}=\widehat{BAD}=180^0-60^0=120^0\)
AB//CD
=>\(\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{C}+\widehat{C}+40^0=180^0\)
=>\(2\cdot\widehat{C}=180^0-40^0=140^0\)
=>\(\widehat{C}=70^0\)
\(\widehat{B}=70^0+40^0=110^0\)
ABCD là hình thang có AB//CD
=>\(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)
=>\(2\cdot\widehat{D}+\widehat{D}=180^0\)
=>\(3\widehat{D}=180^0\)
=>\(\widehat{D}=60^0\)
\(\widehat{A}=2\cdot60^0=120^0\)