\(Cho:a;b\ge0.\)
\(CMR:\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Xét x^3 + y3 - xy.(x+y)
= (x+y) . ( x^2 - xy + y^2 - xy) = (x+y).(x^2-2xy+y^2)
=(x+y).(x-y)^2 >= với mọi x,y >=0 . Dấu "=" xảy ra <=> x=y >=0
Áp dụng bđt trên cho a,b >=0 có VT = \(\frac{4\left(a^3+b^3\right)}{8}\)= \(\frac{a^3+b^3+3\left(a^3+b^3\right)}{8}\)
>= \(\frac{a^3+b^3+3ab.\left(a+b\right)}{8}\) = \(\frac{\left(a+b\right)^3}{8}\) = \(\left(\frac{a+b}{2}\right)^3\) = VP
=> ĐPCM
Dấu "=" xảy ra <=> a=b>=0
i don't know