K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

Xét \(\Delta\)ACE vuông tại E và  \(\Delta\)ABD vuông tại D 

có: AB = AC  ( gt)

 ^A chung 

=>   \(\Delta\)ACE =  \(\Delta\)ABD ( cạnh huyền - góc nhọn )

=> CE = BD

15 tháng 12 2019

Cảm ơn bạn nha

8 tháng 5 2016

a) Xét tg ABD và tg ACE có

A là góc chung

E = D = 90 độ

AB = AC ( do tg ABC cân tại A )

=> tg ABD = tg ACE ( cạnh huyền - góc nhọn )

b) Vì tg ABD = tg ACE (cmt) => AD = AE ( 2 cạnh tương ứng )

Có : AE + EB = AB ; AD + DC = AC

mà AB = AC ( cmt ) ; AD = AE ( cmt )

=> EB = DC

Xét tg EBC và tg DCB có :

E = D = 90 độ

B = C ( do tg ABC cân )

EB = DC (cmt)

=> tg EBC = tg DCB (gcg)

=>

10 tháng 5 2016

không có câu c) à

a) Vì AE là phân giác BAC 

=> CAE = BAE 

Xét ∆ vuông ACE và ∆ vuông AKE ta có : 

AE chung 

CAE = BAE 

=> ∆ACE = ∆AKE (ch-gn)

=> AC = AK ( tương ứng )

=> ∆ACK cân tại A

Vì AE là phân giác BAC trong ∆ACK 

=> AE là trung trực ∆ACK

=> AE \(\perp\)CK

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE và AD=AE

b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có 

BC chung

EB=DC

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)

=>\(\widehat{HBC}=\widehat{HCB}\)

hay ΔHBC cân tại H

c: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AH là đường trung trực của BC

12 tháng 5 2020

a) Xét ΔABDvàΔACEcó

AB = AC (gt)

ADBˆ=AECˆ=90

Aˆ(chung)

Do đó: ΔABD=ΔACE(cạnh huyền −góc nhọn)

=>EC=AB(2 cạnh tương ứng)

 Vì \(\Delta ABC\) cân tại A nên AB=AC (đ/n) và \(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta EBC\)​  và \(\Delta DCB\)​  có : 

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

\(\widehat{BEC}=\widehat{CDB}\) (=90o)

=> \(\Delta EBC\)=\(\Delta DCB\)(cgv-gnk)

=> BD=CE( cctư) (đpcm)

b) Vì \(\Delta EBC\)=\(\Delta DCB\)nên \(\widehat{IBC}=\widehat{ICB}\)(cgtư)

Xét\(\Delta IBC\)Có :\(\widehat{IBC}=\widehat{ICB}\)=> \(\Delta IBC\)cân=> IB=IC(đ/n)

c) Gọi giao điểm của AI và BC là O

Vì \(\widehat{ABC}=\widehat{ACB}\) và  \(\widehat{IBC}=\widehat{ICB}\) nên \(\widehat{ABI}=\widehat{ACI}\)

Xét  \(\Delta ABI\)​  và \(\Delta ACI\)​  có : 

AB=AC

\(\widehat{ABI}=\widehat{ACI}\)

IB=IC

=> \(\Delta ABI=\Delta ACI\left(c.g.c\right)\)

=> \(\widehat{BAI}=\widehat{CAI}\left(cgtư\right)\)

Xét  \(\Delta ABO\)​  và \(\Delta ACO\)​  có : 

AB=AC

\(\widehat{ABO}=\widehat{ACO}\)

\(\widehat{BAO}=\widehat{CAO}\)

=> \(\Delta ABO=\Delta ACO\left(c.g.c\right)\)

=> \(\widehat{BOA}=\widehat{COA}\left(cgtư\right)\)

mà \(\widehat{BOA}+\widehat{COA}=180^o\)

=> \(\widehat{BOA}=\widehat{COA}\left(=90^o\right)\)

hay AI\(\perp\)BC (đpcm)

3 tháng 2 2016

Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh 

Câu b )  - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )

              => Góc B1 = góc C1 ( 2 góc tương ứng )

              - Vì tam giác ABC là tam giác cân => góc B = góc C 

               Ta có góc B1 + góc B2 = góc C1 + C2 

               => Góc B2 = góc C2 

               - Vậy tam giác HBC là tam giác cân 

               Câu c )              

            

20 tháng 7 2017

A B C D E H K M