K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

Ta có:  tam giác ABC=tam giác DEF (1)
và tam giác DEF = tam giác HIK       (2)
Từ (1) và (2) =>  tam giác ABC = tam giác HIK

22 tháng 2 2020

Ta có:  tam giác ABC=tam giác DEF (1)
và tam giác DEF = tam giác HIK       (2)
Từ (1) và (2) =>  tam giác ABC = tam giác HIK

học tốt

12 tháng 10 2016

biết ABC = DEF, DEF=HIK => ABC=HIK

12 tháng 10 2016

Biết tam giác abc bằng tam giác DEF, tg DEF = tg HIK suy ra tam giác ABC = tam giác HIK

18 tháng 5 2018

có cần rườm rà thế ko bn? mk chỉnh đề nhé

cho ΔABC cân tại A. trung truyến BM,CN cắt nhau tại I. CMR AI là p/g ∠BAC

vì BM và CN là 2 trung truyến của 1 Δ và cắt nhau tại I

=> I là trọng tâm ΔABC => AI là trung tuyến mà ΔABC cân tại A nên AI là p/g ∠BAC

23 tháng 5 2018

Nhưng bạn cứ trả lời câu hỏi của mình đi!

17 tháng 8 2017

xét 2 tam giác vuông ABC và tam giác EDF, ta có: 

cạnh góc vuông : AB = DE

góc nhọn : ABC = DEF 

=> tam giác ABC = tam giác DEF ( cgv - gn )

Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)

22 tháng 2 2020

xét 2 tam giác vuông ABC và tam giác EDF, ta có: 
cạnh góc vuông : AB = DE
góc nhọn : ABC = DEF 
=> tam giác ABC = tam giác DEF ( cgv - gn )
Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông
và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)

15 tháng 4 2020

Tự vẽ hình~

Xét tam giác ABC và tam giác DFE

\(\frac{AB}{EF}=\frac{6}{12}=\frac{1}{2}\)

\(\frac{AC}{FE}=\frac{9}{18}=\frac{1}{2}\)

 \(\frac{BC}{DE}=\frac{12}{24}=\frac{1}{2}\)

\(\Rightarrow\frac{AB}{DF}=\frac{AC}{FE}=\frac{BC}{DE}=\frac{1}{2}\)

=>Tam giác ABC đồng đang với tam giác DFE (c.c.c)

15 tháng 11 2021

ai đóa giúp mik ik :<

15 tháng 11 2021

a: Ta có: ΔABC=ΔDEF

nên AB=DE(1)

Ta có: ΔDEF=ΔMNP

nên DE=MN(2)

Từ (1) và (2) suy ra AB=MN

Xét ΔABC vuông tại A và ΔDEF vuông tại D có 

BC=EF(gt)

AC=DF(gt)

Do đó: ΔABC=ΔDEF(cạnh huyền-cạnh góc vuông)

AH
Akai Haruma
Giáo viên
9 tháng 3 2021

Cách 1:

Xét tam giác $ABC$ và $DEF$ có:

$\widehat{A}=\widehat{D}=90^0$

$BC=EF$

$AC=DF$

$\Rightarrow \triangle ABC=\triangle DEF$ (ch-gcv)

Cách 2:

Vì $BC=EF; AC=DF\Rightarrow BC^2-AC^2=EF^2-DF^2$ hay $BA^2=ED^2$

$\Leftrightarrow BA=ED$ (theo định lý Pitago)

Hai tam giác $ABC$ và $DEF$ có các cạnh $AB=DE, BC=EF, AC=DF$ nên bằng nhau theo TH c.c.c

25 tháng 4 2022

a. lỗi

b. Xét tam giác ABD và tam giác ACD:

     AB = AC (tam giác ABC cân tại A)

     AD chung

     BD = CD ( D là trung điểm BC)

=> tam giác ABD = tam giác ACD (c-c-c)

=> góc BAD = góc CAD (2 góc tương ứng)

  Xét tam giác AED và tam giác AFD:

    AED = AFD (DE ⊥ AB

                         DF ⊥ AC)

    góc BAD = góc CAD (cmt)

    AD chung

=>  tam giác AED và tam giác AFD (ch-gn) (đpcm)