chứng minh 6n+1chia hết cho 3n-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10^{10}\) không chia hết cho 9; \(10^9\) không chia hết cho 3, bạn xem lại đề
a, 2n-1 chia hết cho n+2
=> 2n+4-5 chia hết cho n+2
Vì 2n+4 chia hết cho n+2
=> 5 chia hết cho n+2
=> n+2 thuộc Ư(5)
n+2 | n |
1 | -1 |
-1 | -3 |
5 | 3 |
-5 | -7 |
KL: n \(\in\)..........
b, 2n+1 chia hết cho 2n-1
=> 2n-1+2 chia hết cho 2n-1
Vì 2n-1 chia hết cho 2n-1
=> 2 chia hết cho 2n-1 mà 2n-1 lẻ
=> 2n-1 thuộc các ước lẻ của 2
2n-1 | n |
1 | 1 |
-1 | 0 |
KL: n \(\in\)..................
c, 3n+2 chia hết cho 2n-1
=> 6n+4 chia hết cho 2n-1
=> 6n-3+7 chia hết cho 2n-1
Vì 6n-3 chia hết cho 2n-1
=> 7 chia hết cho 2n-1
2n-1 | n |
1 | 1 |
-1 | 0 |
7 | 4 |
-7 | -3 |
KL: n\(\in\).......................
2n+1 chia hết cho n-4 thì \(\frac{2n+1}{n-4}\)=\(\frac{2\left(n-4\right)+9}{n-4}=2+\frac{9}{n-4}\)là số nguyên => n-4 là ước của 9
9 có các ước là 1;-1;3;-3;9;-9
n-4=1 =>n=5 ; n-4=-1 =>n=3 ; n-4 =3 =>n=7 ; n-4 = -3 => n=1 ; n-4 =9 => n=13 ; n-4 =-9 => n =-5
6n+7chia hết cho 3n +2 thì \(\frac{6n+7}{3n+2}=\frac{2\left(3n+2\right)+3}{3n+2}=2+\frac{3}{3n+2}\)là số nguyên hay 3n+2 là ước của 3
3 có các ước là 1;-1;3;-3
3n+2=1 =>n =-1/3 ; 3n+2 =-1 => n= -1 ; 3n+2 =3 => n=1/3 ; 3n+2 = -3 =>2 =-5/3
Ta có
\(10\equiv1\left(mod9\right)\)
\(\Rightarrow10^{10}\equiv1\left(mod9\right)\)
\(\Rightarrow10^{10}-1\equiv0\left(mod9\right)\)
\(\Rightarrow10^{10}-1⋮9\left(đpcm\right)\)
Hok tốt !!!!!!!!
Bài làm:
Ta có: \(10\equiv1\left(mod.9\right)\)
=> \(10^{10}\equiv1\left(mod.9\right)\)
<=> \(10^{10}-1\equiv0\left(mod.9\right)\)
=> 1010 - 1 chia hết cho 9
(n2+3n-1)(n+2)-n3-2
=n3+3n2-n+2n2+6n-2-n2-2
=5n2-5n
Vì 5 chia hết cho 5 nên suy ra 5n2 chia hết cho 5 với mọi n và 5n chia hết cho 5 với mọi n
Nên 5n2-5n chia hết cho 5 với mọi n
Vậy (n2+3n-1)(n+2)-n3-2 chia hết cho 5 với mọi n
n = 5 vì :
=> 3.5 + 1 : 5 - 3
= 15 + 1 : 5 - 3
= 16 : 2
= 8
=> n = 5 vì 3.5 + 1 CHC 5 - 3 .
a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM
b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.
Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9
a) A = n3 +3n2 + 2n
A = n3 + n2 + 2n2 + 2n
A = n2.( n+1) + 2n.(n+1)
A = (n+1).(n2+2n)
A = (n+1).n.(n+2)
A = n.(n+1).(n+2)
Vì n.(n+1).(n+2) là tích 3 số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3
=> A chia hết cho 3
Chứng tỏ A chia hết cho 3 với mọi n nguyên
b) Ta có: 15 = 3.5
Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5
Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5
Mặt khác n<10 nên n<n+1<n+2<12
Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11
Vậy các giá trị của n tìm được là: 3;4;5;8;9