K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

5x + 3 (10 - x) = 45

=> 5x + 30 - 3x = 45

=> (5x - 3x) + 30 = 45

=> 2x = 45 - 30

=> 2x = 15

=> x = 15/2

=> x = 7,5

Vậy x = 7,5

7 tháng 7 2023

\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)

\(10,\left(x+3\right)^2-x^2=45\)

\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)

Vậy \(S=\left\{6\right\}\)

\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)

\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)

24 tháng 6 2023

1, \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)

\(A=5x^3-15x+7x^2-5x^3-7x^2\)

\(A=\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)-15x\)

\(A=-15x\)

Thay \(x=-5\) vào A ta được:

\(-15\cdot-5=75\)

Vậy: ....

2. \(B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)

\(B=x^3-3x+7x^2-5x^3-7x^2\)

\(B=\left(x^3-5x^3\right)+\left(7x^2-7x^2\right)-3x\)

\(B=-4x^3-3x\)

Thay \(x=10,y=-1\) vào B ta được:

\(-4\cdot10^3-3\cdot10=-4\cdot1000-3\cdot10=-4000-30=-4030\)

Vậy: ....

24 tháng 6 2023

B =... có biến y đâu mà thay vô như thật vậy:v

6 tháng 12 2016

Bài 1:

Đk:\(1\le x\le2\)

\(pt\Leftrightarrow x^2-3x-10=-\sqrt{x^2-3x+2}\)

Đặt \(\sqrt{x^2-3x+2}=t\left(t\ge0\right)\) ta có:

\(t^2-12=-t\Leftrightarrow t^2+t-12=0\)\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-4\left(loai\right)\\t=3\end{array}\right.\)

Xét \(t=3\Leftrightarrow x^2-3x+2=3\)

\(\Leftrightarrow x^2-3x-1=0\)

\(\Delta=\left(-3\right)^2-\left[\left(-4\right).\left(1.1\right)\right]=13\)\(\Leftrightarrow x_{1,2}=\frac{3\pm\sqrt{13}}{2}\) (thỏa mãn)

6 tháng 12 2016

các phần khác tương tự

11 tháng 1 2023

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

11 tháng 1 2023

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`

a: \(=49x^2-64-10\left(4x^2+12x+9\right)+5x\left(9x^2-12x+4\right)+4x\left(x^2-10x+25\right)\)

\(=49x^2-64-40x^2-120x-90+45x^3-60x^2+20x+4x^3-40x^2+100x\)

\(=49x^3-91x^2-154\)

b: \(=27x^3+189x^2+441x+343-125x^3+y^3+x^3+6x^2y+12xy^2+8y^3\)

\(=-97x^3+189x^2+441x+6x^2y+12xy^2+9y^3+343\)

13 tháng 11 2023

a: \(y=\left(5x-10\right)^4\)

=>\(y'=4\cdot\left(5x-10\right)'\cdot\left(5x-10\right)^3\)

\(=4\cdot5\cdot\left(5x-10\right)^3=20\left(5x-10\right)^3\)

Đặt y'>0

=>\(20\left(5x-10\right)^3>0\)

=>\(\left(5x-10\right)^3>0\)

=>5x-10>0

=>x>2

Đặt y'<0

=>\(20\left(5x-10\right)^3< 0\)

=>\(\left(5x-10\right)^3< 0\)

=>5x-10<0

=>x<2

Vậy: hàm số đồng biến trên \(\left(2;+\infty\right)\)

Hàm số nghịch biến trên \(\left(-\infty;2\right)\)

c: \(y=\left(x^3-1\right)^3\)

=>\(y'=3\left(x^3-1\right)'\cdot\left(x^3-1\right)^2\)

\(=9x^2\left(x^3-1\right)^2>=0\forall x\)

=>Hàm số luôn đồng biến trên R

d: \(y=\left(x^2-1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-1\right)'\left(x+2\right)+\left(x^2-1\right)\left(x+2\right)'\)

\(=2x\left(x+2\right)+x^2-1\)

\(=2x^2+4x+x^2-1=3x^2+4x-1\)

Đặt y'>0

=>\(3x^2+4x-1>0\)

=>\(\left[{}\begin{matrix}x< \dfrac{-2-\sqrt{7}}{3}\\x>\dfrac{-2+\sqrt{7}}{3}\end{matrix}\right.\)

Đặt y'<0

=>\(3x^2+4x-1< 0\)

=>\(\dfrac{-2-\sqrt{7}}{3}< x< \dfrac{-2+\sqrt{7}}{3}\)

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-2-\sqrt{7}}{3}\right);\left(\dfrac{-2+\sqrt{7}}{3};+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(\dfrac{-2-\sqrt{7}}{3};\dfrac{-2+\sqrt{7}}{3}\right)\)

b: \(y=\left(-x-1\right)\left(x+2\right)^4\)

=>\(y'=\left(-x-1\right)'\left(x+2\right)^4+\left(-x-1\right)\left[\left(x+2\right)^4\right]'\)

\(=-\left(x+2\right)^4+\left(-x-1\right)\cdot4\left(x+2\right)'\left(x+2\right)^3\)

\(=-\left(x+2\right)^4+4\left(x+2\right)^3\cdot\left(-x-1\right)\)

\(=-\left(x+2\right)^3\left[\left(x+2\right)+4\left(x+1\right)\right]\)

\(=-\left(x+2\right)^2\cdot\left(x+2\right)\left(5x+6\right)\)

Đặt y'<0

=>\(-\left(x+2\right)^2\left(x+2\right)\left(5x+6\right)< 0\)

=>(x+2)(5x+6)>0

TH1: \(\left\{{}\begin{matrix}x+2>0\\5x+6>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-2\\x>-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x>-\dfrac{6}{5}\)

TH2: \(\left\{{}\begin{matrix}x+2< 0\\5x+6< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -2\\x< -\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x< -2\)

Đặt y'>0

=>(x+2)(5x+6)<0

TH1: \(\left\{{}\begin{matrix}x+2>0\\5x+6< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-2\\x< -\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow-2< x< -\dfrac{6}{5}\)

TH2: \(\left\{{}\begin{matrix}x+2< 0\\5x+6>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -2\\x>-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy: HSĐB trên các khoảng \(\left(-\infty;-2\right);\left(-\dfrac{6}{5};+\infty\right)\)

HSNB trên khoảng \(\left(-2;-\dfrac{6}{5}\right)\)

NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)

29 tháng 8 2018

\(A=x^2-4x-x\left(x-4\right)-15\)

\(=x^2-4x-x^2+4x-15=-15\)   =>  đpcm

\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)

\(=5x^3-5x^2-5x^3+5x^2-13=-13\)   =>   đpcm

\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)

\(=-3x^2+15x+3x^2-12x-3x+7=7\)   =>   đpcm

29 tháng 8 2018

\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)

\(=7x^2-35x+21-7x^2+35x-14=7\)  =>   đpcm

\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)

\(=4x^3-20x-4x^3+20x+20=20\)    =>    đpcm

\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) =>   đpcm