K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8

a.

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

b.

Từ câu a:

\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow a^4+b^4+c^4=\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\)

29 tháng 6 2016

a) Ta có: \(a+b+c=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(b+a+c\right)\right]\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

29 tháng 6 2016

b) Ta có: \(a+b+c=0\)

\(\Rightarrow2abc\left(a+b+c\right)=0\)

\(\Rightarrow2a^2bc+2ab^2c+2abc^2=0\)

Ta lại có:

\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)^2\)(chứng minh câu a)

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+4a^2bc+4ab^2c+4abc^2\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

13 tháng 10 2016

Ta có :

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0^2\)

\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc\right)\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4a^2b^2+4b^2c^2+4a^2c^2+8ab^2c+8abc^2+8a^2bc\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4a^2b^2+4b^2c^2+4a^2c^2+8abc\left(a+b+c\right)\)

Mà \(a+b+c=0\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4a^2b^2+4b^2c^2+4a^2c^2\)

Bớt cả 2 vế đi\(2a^2b^2+2b^2c^2+2a^2c^2\)có :

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2a^2c^2\)

Lại cộng cả 2 vế cho \(a^4+b^4+c^4;\)có :

\(\Rightarrow a^4+b^4+c^4+a^4+b^4+c^4=+a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow a^4+b^4+c^4=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)

Vậy ...

23 tháng 9 2019

Bạn tham khảo tại đây:

Câu hỏi của Mika Yuuichiru - Toán lớp 8 - Học toán với OnlineMath

9 tháng 8 2016

a) Ta có: \(a+b+c=0\)

\(\Rightarrow2abc\left(a+b+c\right)=0\)

\(\Rightarrow2a^2bc+2ab^2c+2abc^2=0\)

Ta lại có:

\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)^2\)  (cái này bạn tự chứng minh nha)

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+4a^2bc+4ab^2c+4abc^2\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\left(đpcm\right)\)

b) Ta có: \(a+b+c=0\)

\(\Rightarrow a=-\left(b+c\right)\)

\(\Rightarrow a^2=b^2+c^2+2bc\)

\(\Rightarrow a^2-b^2-c^2=2bc\)

\(\Rightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2=4b^2c^2\)

\(\Rightarrow a^4+b^4+c^4=4b^2c^2+2a^2b^2+2a^2c^2-2b^2c^2\)

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)

\(\Rightarrow a^4+b^4+c^4+a^4+b^4+c^4=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow a^4+b^4+c^4=\frac{\left(a^2+b^2+c^2\right)^2}{2}\left(đpcm\right)\)

Chúc bạn học tốt và tíck cho mìk vs nhé!

9 tháng 8 2016

Cảm ơn bạn 

13 tháng 10 2016

Ta có \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2a^2bc+2acb^2+2abc^2\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)

Ta lại có 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(ab+bc+ca\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

Ta có (ab+bc+ca)2=a2b2+b2c2+c2a2+2a2bc+2acb2+2abc2

=a2b2+b2c2+c2a2+2abc(a+b+c)=a2b2+b2c2+c2a2

Ta lại có 

(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0

⇔(a2+b2+c2)2=4(ab+bc+ca)2

⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=4(ab+bc+ca)2

⇔a4+b4+c4+2(ab+bc+ca)2=4(ab+bc+ca)2

⇔a4+b4+c4=2(ab+bc+ca)2

7 tháng 6 2017

undefined

12 tháng 11 2017

F.U.C.K

17 tháng 7 2018

Bỏ đi phần a=b=c =0 mới giải được nha .

Ta có :

Bình phương 2 vế của a+b+c =0   ta được :

\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)(1)

Bình phương 2 vế của (1) ta được :

\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)