K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vd \(1\cdot2=2\) là số nguyên tố

=>Đề sai rồi bạn

8 tháng 8 2024

Gọi 2 số nguyên tô đó lần lượt là `a;b`

Ta có: Tích `2` số nguyên tố là `ab`

Do `a vdots a; b vdots b => ab vdots a` và `b`

Mà `ab vdots 1` và `ab`

`=> ab` có nhiều hơn `2` ước (đpcm)

Giải mã bài toán chứng minh 4=5.Bài toán này vốn là 1 bài toán mẹo nhưng đây thực ra đây là bài toán phản khoa học của mấy đứa bạn học sinh lớp 8 hiện nay nghĩ ra. Sau đây là mẹo của những người làm bài mà mọi người ko để ý được:+Những người giải được bài này thường dựa vào đẳng thức của năm lớp 7 là (-A)^2=A^2 với mọi A E R để đánh lừa người khác. Một số người chứng...
Đọc tiếp

Giải mã bài toán chứng minh 4=5.

Bài toán này vốn là 1 bài toán mẹo nhưng đây thực ra đây là bài toán phản khoa học của mấy đứa bạn học sinh lớp 8 hiện nay nghĩ ra. Sau đây là mẹo của những người làm bài mà mọi người ko để ý được:

+Những người giải được bài này thường dựa vào đẳng thức của năm lớp 7 là (-A)^2=A^2 với mọi A E R để đánh lừa người khác. Một số người chứng minh bài này đều đưa đến kết quả hằng đẳng thức (4-9/2)^2=(5-9/2)^2=>(-0,5)^2=(0,5)^2. Từ đẳng thức (-A)^2=A^2 những người này đã "hô biến" (-0,5)^2 thành (0,5)^2 để khẵng định -0,5=0,5 rồi suy ra 4=5 nhưng thực ra bài toán này ko đúng và phản khoa học vì cứ làm như vậy thì dễ dàng chứng minh các số khác bằng nhau. Cứ như vầy thành ra các số thực đều bằng nhau, đâm ra phản khoa học và gây ảnh hưởng lớn đến nền toán học. Một bài toán chứng minh 4=5 thế này thì đã góp phần làm xấu nền toán học.

3
26 tháng 1 2016

tối cũng đồng ý mặc dù tôi ko biết j về toán lơp8

25 tháng 4 2016

Dong y

16 tháng 7 2017

a,

\(C=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}\\ C>0+0+0+...+0=0\left(1\right)\)

\(C=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}\)

Ta có:

\(\dfrac{1}{11}< \dfrac{1}{10}\\ \dfrac{1}{12}< \dfrac{1}{10}\\ \dfrac{1}{13}< \dfrac{1}{10}\\ ...\\ \dfrac{1}{19}< \dfrac{1}{10}\)

\(\Rightarrow C< \dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}\left(9\text{ phân số }\dfrac{1}{10}\right)\\ C< 9\cdot\dfrac{1}{10}\\ C< \dfrac{9}{10}< 1\left(2\right)\)

Từ (1) và (2) ta có:

\(0< C< 1\)

Rõ ràng \(0\)\(1\) là hai số nguyên liên tiếp nên \(C\) không phải là số nguyên

Vậy \(C\) không phải là số nguyên (đpcm)

b,

\(D=2\left[\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{n\left(n+2\right)}\right]\\ D=\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{n\left(n+2\right)}\\ D>0+0+0+...+0=0\left(1\right)\)

Ta có:

\(D=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{n\cdot\left(n+2\right)}\\ D=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{n}-\dfrac{1}{n+2}\\ D=\dfrac{1}{1}-\dfrac{1}{n+2}\\ D=1-\dfrac{1}{n+2}< 1\left(\text{Vì }n>0\right)\left(2\right)\)

Từ (1) và (2) ta có:

\(0< D< 1\)

Rõ ràng \(0\)\(1\) là hai số nguyên liên tiếp nên \(D\) không phải là số nguyên

Vậy \(D\) không phải là số nguyên (đpcm)

c,

\(E=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\\ E=\dfrac{2}{6}+\dfrac{2}{8}+\dfrac{2}{10}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\\ E=\dfrac{2}{6}+\dfrac{2}{7}+\dfrac{2}{8}+\dfrac{2}{9}+\dfrac{2}{10}+\dfrac{2}{11}\)

Ta có:

\(\dfrac{2}{6}>\dfrac{2}{12}\\ \dfrac{2}{7}>\dfrac{2}{12}\\ \dfrac{2}{8}>\dfrac{2}{12}\\ ...\\ \dfrac{2}{11}>\dfrac{2}{12}\)

\(\Rightarrow E>\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}\\ E>6\cdot\dfrac{2}{12}\\ E>\dfrac{12}{12}=1\left(1\right)\)

Mặt khác ta có:

\(\dfrac{2}{6}>\dfrac{2}{7}\\ \dfrac{2}{6}>\dfrac{2}{8}\\ \dfrac{2}{6}>\dfrac{2}{9}\\ ...\\ \dfrac{2}{6}>\dfrac{2}{11}\)

\(\Rightarrow E< \dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}\\ E< 6\cdot\dfrac{2}{6}\\ E< 2\left(2\right)\)

Từ (1) và (2) ta có:

\(1< E< 2\)

Rõ ràng \(1\)\(2\) là hai số nguyên liên tiếp nên \(E\) không phải là số nguyên

Vậy \(E\) không phải là số nguyên (đpcm)

16 tháng 7 2017

c) \(E=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\)

\(=\dfrac{2}{6}+\dfrac{2}{8}+\dfrac{2}{10}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\)

\(=2\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)\)

Ta có: \(\dfrac{1}{6}>\dfrac{1}{7}>\dfrac{1}{8}>\dfrac{1}{9}>\dfrac{1}{10}>\dfrac{1}{11}\)

\(\Rightarrow E>2\left(\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}\right)=2\left(\dfrac{1}{11}.6\right)=2\cdot\dfrac{6}{11}=\dfrac{12}{11}>1\) (1)

\(E< 2\left(\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}\right)=2\left(\dfrac{1}{6}.6\right)=2.1=2\) (2)

Từ (1) và (2) suy ra 1 < E < 2 suy ra E không phải là số nguyên

1 tháng 10 2017

Tọa độ đỉnh P là (-b/2a; -delta/4a)

với y=ax^2+bx+c

Áp dụng vào:

y=mx^2-(m+1)x-2m+3

Delta=(m+1)^2-4m(-2m+3)=m^2+2m+1+8m^2-12m=9m^2-10m+1

a=m,b=-(m+1),c=-2m+3

Là sẽ ra.

Để P(M) đi qua điểm (2,1)=> Thay x=2,y=1 vào cho cái đó =0

2=m-(m+1)-2m+3=>-2m+2=2=>m=0

y=mx^2-(m+1)x-2m+3
mx^2-mx-x-2m+3-y=0

=>m(x^2-x-2)-x-y+3=0

Điểm cố định có tọa độ (x_0,y_0)

Với x_0^2-x_0-2=0 và -x_0-y_0+3=0=>(x_0,y_0)=(2,-1) và (-1,-4)

4 tháng 11 2017

P>3 suy ra P có dạng 3k+1 hoặc 3k+2

nếu P=3k+1 thì P+14=3k+1+14=3k+15 là hợp số (trái đề bài)

nếu P=3k+2 thì P+14=3K+2+14=3K+16 có thể là số nguyên tố(chọn)

             P+7=3k+2+7=3k+9 là hợp số(đpcm)

29 tháng 7 2017

nhìn rất giống số đối

29 tháng 7 2017

Đâu phải số đối đâu, nó giống một phương trình mà bạn cần chứng minh.

12 tháng 4 2018

Đáp án là : ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Đi hỏi ông nhà toán học đó là xong!