Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{90}{5}=18\)
Do đó: x=54; y=36
b: \(\Leftrightarrow\left[{}\begin{matrix}x-2=-8\\x-2=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=10\end{matrix}\right.\)
a)Xét tam giác ABM và tam giác DBM có:
BA=BD (gt)
góc ABM = góc DBM (vì BM là tia phân giác của góc ABC)
BM là cạnh chung
=> tam giác ABM = tam giác DBM (c.g.c)
=> góc BAM = góc BDM (hai góc tương ứng)
Mà góc BAM = 90 độ
=> góc BDM = 90 độ => MD vuông góc với BC
Vậy MD vuông góc với BC
b)Vì tam giác ABM = tam giác DBM (cmt)
=> AM = DM (hai cạnh tương ứng)
Xét tam giác AMH và tam giác DMC có:
góc MAH = góc MDC (=90 độ)
AM = DM (cmt)
góc AMH = góc DMC (hai góc đối đỉnh)
=> tam giác AMH = tam giác DMC (g.c.g)
d)Vì tam giác AMH = tam giác DMC (cmt)
=> HM = CM (hai cạnh tương ứng)
*Vì tam giác ABM = tam giác DBM (cmt) => góc AMB = góc DMB (hai góc tương ứng)
*Vì tam giác AMH = tam giác DMC (cmt) => góc AMH = góc DMC (hai góc tương ứng)
=>góc ABM + góc AMH = góc DMB + góc DMC
=> góc BMH = góc BMC
Xét tam giác BHM và tam giác BCM có
góc HBM = góc CBM (vì BM là tia phân giác của góc ABC)
BM là cạnh chung
góc BMH = góc BMC (cmt)
=> tam giác BHM = tam giác BCM (g.c.g)
=> BH = BC (hai cạnh tương ứng)
=> tam giác BHC cân tại B
=> góc BHK = góc BCK (hai góc tương ứng)
*Xét tam giác BHK và tam giác BCK có:
BH = BC (hai cạnh tương ứng)
góc BHK = góc BCK (cmt)
HK = CK (vì K là trung điểm của HC)
=> tam giác BHK = tam giác BCK (c.g.c)
=> góc HBK = góc CBK (hai góc tương ứng)
Mà tia BK nằm giữa tia BH và tia BC
=> BK là tia phân giác của góc HBC
Mà tia BM là tia phân giác của góc ABC hay góc HBC
=> tia BK và tia BM trùng nhau
=> 3 điểm B,M,K thẳng hàng
phần c tui cảm thấy hơi sai sai gì đó, mong bạn kiểm tra lại cái đề
Bài 3:
a: Xét ΔOCA và ΔOCB có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
OA=OB
Do đó: ΔOCA=ΔOCB
b: Xét ΔOHA và ΔOHB có
OA=OB
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOHA=ΔOHB
Suy ra: HA=HB
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(1)
Ta có: CB=CA
nên C nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OC là đường trung trực của AB
hay OC\(\perp\)AB
Bài 1:
a: Xét ΔCAB và ΔCDE có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)
CB=CE
Do đó: ΔCAB=ΔCDE
b: Ta có: ΔCAB=ΔCDE
nên \(\widehat{CAB}=\widehat{CDE}\)
mà \(\widehat{CAB}=80^0\)
nên \(\widehat{CDE}=80^0\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DE
a,
\(C=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}\\ C>0+0+0+...+0=0\left(1\right)\)
\(C=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}\)
Ta có:
\(\dfrac{1}{11}< \dfrac{1}{10}\\ \dfrac{1}{12}< \dfrac{1}{10}\\ \dfrac{1}{13}< \dfrac{1}{10}\\ ...\\ \dfrac{1}{19}< \dfrac{1}{10}\)
\(\Rightarrow C< \dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}\left(9\text{ phân số }\dfrac{1}{10}\right)\\ C< 9\cdot\dfrac{1}{10}\\ C< \dfrac{9}{10}< 1\left(2\right)\)
Từ (1) và (2) ta có:
\(0< C< 1\)
Rõ ràng \(0\) và \(1\) là hai số nguyên liên tiếp nên \(C\) không phải là số nguyên
Vậy \(C\) không phải là số nguyên (đpcm)
b,
\(D=2\left[\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{n\left(n+2\right)}\right]\\ D=\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{n\left(n+2\right)}\\ D>0+0+0+...+0=0\left(1\right)\)
Ta có:
\(D=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{n\cdot\left(n+2\right)}\\ D=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{n}-\dfrac{1}{n+2}\\ D=\dfrac{1}{1}-\dfrac{1}{n+2}\\ D=1-\dfrac{1}{n+2}< 1\left(\text{Vì }n>0\right)\left(2\right)\)
Từ (1) và (2) ta có:
\(0< D< 1\)
Rõ ràng \(0\) và \(1\) là hai số nguyên liên tiếp nên \(D\) không phải là số nguyên
Vậy \(D\) không phải là số nguyên (đpcm)
c,
\(E=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\\ E=\dfrac{2}{6}+\dfrac{2}{8}+\dfrac{2}{10}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\\ E=\dfrac{2}{6}+\dfrac{2}{7}+\dfrac{2}{8}+\dfrac{2}{9}+\dfrac{2}{10}+\dfrac{2}{11}\)
Ta có:
\(\dfrac{2}{6}>\dfrac{2}{12}\\ \dfrac{2}{7}>\dfrac{2}{12}\\ \dfrac{2}{8}>\dfrac{2}{12}\\ ...\\ \dfrac{2}{11}>\dfrac{2}{12}\)
\(\Rightarrow E>\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}\\ E>6\cdot\dfrac{2}{12}\\ E>\dfrac{12}{12}=1\left(1\right)\)
Mặt khác ta có:
\(\dfrac{2}{6}>\dfrac{2}{7}\\ \dfrac{2}{6}>\dfrac{2}{8}\\ \dfrac{2}{6}>\dfrac{2}{9}\\ ...\\ \dfrac{2}{6}>\dfrac{2}{11}\)
\(\Rightarrow E< \dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}\\ E< 6\cdot\dfrac{2}{6}\\ E< 2\left(2\right)\)
Từ (1) và (2) ta có:
\(1< E< 2\)
Rõ ràng \(1\) và \(2\) là hai số nguyên liên tiếp nên \(E\) không phải là số nguyên
Vậy \(E\) không phải là số nguyên (đpcm)
c) \(E=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\)
\(=\dfrac{2}{6}+\dfrac{2}{8}+\dfrac{2}{10}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\)
\(=2\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)\)
Ta có: \(\dfrac{1}{6}>\dfrac{1}{7}>\dfrac{1}{8}>\dfrac{1}{9}>\dfrac{1}{10}>\dfrac{1}{11}\)
\(\Rightarrow E>2\left(\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}\right)=2\left(\dfrac{1}{11}.6\right)=2\cdot\dfrac{6}{11}=\dfrac{12}{11}>1\) (1)
\(E< 2\left(\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}\right)=2\left(\dfrac{1}{6}.6\right)=2.1=2\) (2)
Từ (1) và (2) suy ra 1 < E < 2 suy ra E không phải là số nguyên