Tính gtrị B là số nguyên B = 2×x-1/x+1(giúp tớ với ạ tớ cần gấp)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)
b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)
\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)
Tìm được A = 24 5 và B = - 6 x - 4 với x > 0 và x ≠ 4 ta tìm được 0 < x < 1
Ta có M = - 1 + 2 x ∈ Z => x ∈ Ư(2) từ đó tìm được x=1
Đề là như thế này phải không bạn \(2x^4+3x^2y^2+y^4+y^2\)
Giải
\(2x^4+3x^2y^2+y^4+y^2\)
\(=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=\left(x^2+y^2\right)+\left(2x^2+y^2\right)+y^2\)\(=\left(x^2+y^2\right)+\left(x^2+x^2+y^2\right)+y^2\)(*)
Thay x2 +y2 =1 vào (*), ta có :
\(=1+1+x^2+y^2\)
\(=1+1+1=3\)
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
Bổ sung đề bài: `x ∈ Z`
Ta có điều kiện: `x + 1 ne 0 <=> x ne - 1`
Do `x ∈ Z => 2x - 1` và `x+1 ∈ Z`
`B = (2x - 1)/(x+1)`
`= (2x + 2 - 3)/(x+1)`
`= (2(x+1))/(x+1) - 3/(x+1)`
`= 2 - 3/(x+1)`
Để `B ∈ Z` thì: `3/(x+1) ∈ Z `
`<=> x + 1 ∈ Ư(3) = {-3;-1;1;3}`
`<=> x ∈ {-4;-2;0;2} ` (Thỏa mãn)
Vậy ...