Tìm các số tự nhiên x, y biết:xy - 2x + 5y - 10= 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x+1 là Ư(3x+2)
=>3x+2 chia hết cho 2x+1
<=>2(3x+2) chia hết cho 2x+1
<=>6x+4 chia hết cho 2x+1
<=>3(2x+1)+1 chia hết cho 2x+1
<=>1 chia hết cho 2x+1
=>2x+1 là Ư(1)
=>Ư(1)={-1;1}
Có:
TH1: 2x+1=-1
<=>2x=-2
<=>x=-1(t/m)
TH2: 2x+1=1
<=>2x=0
<=>x=0(t/m)
Vậy x thuộc {-1;0}
b)xy+x+y=2
<=>x(y+1)+y+1=3
<=>(y+1)(x+1)=3
=>y+1 và x+1 thuộc Ư(3)
=>Ư(3)={-1;1;-3;3}
Ta có bảng sau:
x+1 | -1 | 1 | -3 | 3 |
y+1 | -3 | 3 | -1 | 1 |
x | -2 | 0 | -4 | 2 |
y | -4 | 2 | -2 | 0 |
NX | loại | t/m | loại | t/m |
Vậy các cặp số (x;y) thỏa mãn là (0;2) và (2;0)
(2x + 1) . (2x + 2) . (2x + 3) . (2x + 4) - 5y = 11879
[(2x + 1). (2x + 4)].[(2x + 2) . (2x + 3)] -5y = 11879
(4x2+10x+4).(4x2+10x+6) -5y = 11879
Đặt t= 4x2+10x+4
t(t+2) -5y = 11879
t2+2t-5y = 11879
(t+1)2 = 11880+5y
(4x2+10x+5)2 = 5(2376+y)
=> x = 0; y=-2371
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
Câu a đề bài thiếu
b, \(x-3=y\left(x-1\right)\)
\(\frac{x-1-2}{x-1}=y\)
\(1-\frac{2}{x-1}=y\)
\(\frac{2}{x-1}=1-y\)
Có \(1-y\in Z\)
\(\Rightarrow\frac{2}{x-1}\in Z\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
Tính các trường hợp của x rồi thay vào tàm y và tìm những cặp thỏa mãn điều kiện
`xy+2x+2y=-16`
`<=>x(y+2)+2y+4=-12`
`<=>x(y+2)+2(y+2)=-12`
`<=>(x+2)(y+2)=-12`
Vì `x,y in ZZ=>x+2,y+2 in ZZ`
`=>x+2,y+2 in Ư(-12)={+-1,+-2,+-3,+-4,+-6,+-12}`
Đến đấy chia th rồi giải thui :v
a) xy + 4x = 35 + 5y
=> xy + 4x - 5y = 35
=> x(y + 4) - 5(y + 4) = 15
=> (x - 5)(y + 4) = 15
=> x - 5;y + 4 \(\in\)Ư(15) = {1; 3; 5; 15}
Lập bảng :
x - 5 | 1 | 3 | 5 | 15 |
y + 4 | 15 | 5 | 3 | 1 |
x | 6 | 8 | 10 | 20 |
y | 11 | 1 | -1(loại) | -3(loại) |
Vậy ...
b) 2|x| + y2 + y = 2x + 1
Ta có: 2x + 1 là số lẻ => 2|x| + y2 + y là số lẻ
Mà y2 + y = y(y + 1) là số chẵn => 2|x| là số lẻ
<=> 2|x| = 1 <=> 2|x| = 20 <=> |x| = 0 <=> x = 0
Với x = 0 => 20 + y2 + y = 2.0 + 1
=> 1 + y2 + y = 1
=> y(y + 1) = 0
=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Do x; y \(\in\)N => x = y = 0 (tm)
=> 2(4-x)(11-5y) =18
=> (4-x)(11-5y) =9=1.9 =9.1 =3.3
+4-x =1 => x = 3 và 11-5y =9 =>5y =2 loại
+4-x =9 loại
+4 -x =3 => x =1 và 11-5y =3 => 5y =8 loại
Vậy không có hai số tự nhiên nào thỏa mãn.
Ta có : (xy-2x)+(5y-10)=15
x(y-2)+5(y-2)=15
(y-2)(x+5)=15
=> y-2=5 và x+5=3 hoặc y-2=3 và x+5=5
=>y=7 và x=-2 hoặc y=5 và x=0