Cho tam giác ABC vuông tại A có đường trung tuyến AM .Gọi D trung điểm AB, E là đối xứng M qua D
a) cminh tứ giác AEBM là hình thoi
b) Gọi I là trung điểm AM. CMinh E,I ,C thẳng hàng
c) Tam giác ABCD có điều kiện gì thi AEBM là hình vuong?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEBM có
D la trung điểm chung của AB và EM
MA=MB
Do đó: AEBM là hình thoi
b: Xét tứ giác AEMC có
AE//MC
AE=MC
Do đó: AEMC là hình bình hành
=>AM cắt EC tại trung điểm của mỗi đường
=>E,I,C thẳng hàng
c: Để AEBM là hình vuông thì góc AMB=90 độ
=>AM vuông góc với BC
=>ΔABC cân tại A
a: Xét tứ giác AEBM co
D là trung điểm chung của AB và ME
MA=MB
DO đó: AEBM là hình thoi
b: Xét tứ giác AEMC có
AE//MC
AE=MC
Do đó: AEMC là hình bình hành
=>AM cắt EC tại trung điểm của mỗi đường
=>E,I,C thẳng hàng
c: Để AEBM là hình vuông thì góc AMB=90 độ
=>AM vuông góc với BC
=>ΔABC cân tại A
=>AB=AC
A) Xét tam giác MDA và tam giác EDB có :
MD=DE( GT)
DA=DB( GT)
góc EDB=góc MDA ( góc đối đỉnh)
vậy tam giác MDA = tam giác EDB( C-G-C)
suy ra : DE=MA( hai canh tương ứng)
chứng minh tương tự ta lại có : tam giác MDB= tam giác EDA
suy ra : MB=AE( hai canh tương ứng)
mà ta lại có AM là đường trung tuyến ứng với cạnh huyền vậy AM=1/2BC=MB
vậy : MA=MB=AE=BE
suy ra : tứ giác AEBM là hình thoy
B) Xét tứ giác CMEA có :
MB song song với AE và bằng MB =AE ( theo phần a)
mà ta lại có : MC = MB
vậy AE song song với MC
AE=MC( chứng minh trên)
vậy tứ giác CMEA là HBH
Mà I lại là trung điểm của đường chéo AM
vậy I cũng là trung điểm của đường chéo CE
suy ra : C,i.E thẳng hàng
C) tam giác ABC phải là tam giác vuông cân thì tứ giác AEBM mới là hình vuông
bở lẽ khi tam tam giác ABC vuuong cân thì ta sẽ có góc CBA = 45 độ
mà BA lại là đường phân giác của góc MBE ( theo phần a tứ giác AEMB là hình thoi)
nên góc MBE =45*2=90độ
mà phần a ta lại có tứ giác AMBE là hình thoi
vậy tứ giác AMBE là hình vuông
mình làm xong rồi nhớ mình nhé mình cảm ơn ^_^
câu a) bn ấy lm hơi dài nên mk có cách khác
c/m EBMA là hbh (2 đường chéo cắt tại trung điểm mỗi đường)
mà có AB vuông góc EM (t/c đối xứng)
vậy AEBM là hình thoi
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên AM=BM=CM=BC/2
Xét tứ giác AMBE có
D là trung điểm của đường chéo AB
D là trung điểm của đường chéo ME
Do đó: AMBE là hình bình hành
mà AM=BM
nên AMBE là hình thoi
a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)
Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.
Mà DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)
Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.
b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.
c) Chu vi tứ giác AEBM là 4BM = 8 (cm)
d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của EM
Do đó: AEBM là hình bình hành
a) Ta có MB = MC, DB = DA
⇒ MD là đường trung bình của ΔABC
⇒ MD // AC
Mà AC ⊥ AB
⇒ MD ⊥ AB.
Mà D là trung điểm ME
⇒ AB là đường trung trực của ME
⇒ E đối xứng với M qua AB.
b) + MD là đường trung bình của ΔABC
⇒ AC = 2MD.
E đối xứng với M qua D
⇒ D là trung điểm EM
⇒ EM = 2.MD
⇒ AC = EM.
Lại có AC // EM
⇒ Tứ giác AEMC là hình bình hành.
+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.
Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.
c) Ta có: BC = 4cm ⇒ BM = 2cm
Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm
d)- Cách 1:
Hình thoi AEBM là hình vuông ⇔ AB = EM ⇔ AB = AC
Vậy nếu ABC vuông có thêm điều kiện AB = AC (tức tam giác ABC vuông cân tại A) thì AEBM là hình vuông.
- Cách 2:
Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM
⇔ ΔABC có trung tuyến AM là đường cao
⇔ ΔABC cân tại A.
Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.