K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^2+4x+3\)

\(=2\left(x^2+2x+\dfrac{3}{2}\right)\)

\(=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)

\(=2\left(x+1\right)^2+1>=1>0\forall x\)

3 tháng 8 2024

Ta có:

\(2x^2+4x+3\\ =\left(2x^2+4x+2\right)+1\\ =2\left(x^2+2x+1\right)+1\\ =2\left(x+1\right)^2+1\ge1>0\)

=> Bt luôn dương 

17 tháng 7 2018

a)x^2+2x+3

=x^2+2.x.1+1^2+2

=(x+1)^2+2

         Vì (x+1)^2≥0

   Suy ra:(x+1)^2+2(đpcm)

b)-x^2+4x-5

=-(x^2-4x+5)

=-(x^2-2.2x+4)-1

=-(x-2)^2-1

             Vì -(x-2)^2≤0

     Suy ra -(x-2)^2-1≤-1(đpcm)

21 tháng 7 2016

a, Ta có: A=x2+2x+3 =x2+2x+1+2

                  = (x+1)2+2>0

b, B= -(x2-4x+5) = -(x2-4x+4)-1

       = -(x-2)2-1<0

Chúc bạn học tốt!

21 tháng 7 2016

a)x2+2x+3

=x2+2.x.1+12+2

=(x+1)2+2

         Vì (x+1)2\(\ge0\)

   Suy ra:(x+1)2+2\(\ge2\)(đpcm)

b)-x2+4x-5

=-(x2-4x+5)

=-(x2-2.2x+4)-1

=-(x-2)2-1

             Vì -(x-2)2\(\le0\)

     Suy ra -(x-2)2-1\(\le-1\)(đpcm)

7 tháng 5 2023

C = A - B

= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)

= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²

= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)

= 6x² + 2023

Do x² ≥ 0 với mọi x

⇒ 6x² ≥ 0 với mọi x

⇒ 6x² + 2023 > 0 với mọi x

Vậy C luôn dương với mọi x

7 tháng 5 2023

C = A - B

= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)

= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²

= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)

= 6x² + 2023

Do x² ≥ 0 với mọi x

⇒ 6x² ≥ 0 với mọi x

⇒ 6x² + 2023 > 0 với mọi x

Vậy C luôn dương với mọi x

20 tháng 7 2016

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

20 tháng 7 2016

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.

30 tháng 6 2021

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

`#3107.\text {DN}`

a)

\((2x-3)^2-x(3-x)+5x-4x^2+17\)

`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`

`= x^2 - 10x + 26`

b)

`M = x^2 - 10x + 26`

`= [(x)^2 - 2*x*5 + 5^2] + 1`

`= (x - 5)^2 + 1`

Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`

Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.

26 tháng 7 2017

ta co A=4x^2-2x+3

A=4x^2-2x+1+2

a=

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

20 tháng 8 2021

A=(x+2)^2 +3

B=(x-5)^2 +4

20 tháng 8 2021

C=4(x+1/2)^2 +4

D=(x-1/2)^2 +19/4

E=2(x-3/4)^2 +95/8