Tìm m để phương trình: \(3\left|x\right|+2mx=3m-1\) có một nghiệm duy nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)
=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)
\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)
\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)
=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)
=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)
=>m(5m+4)=18m-9
=>\(5m^2-14m+9=0\)
=>(m-1)(5m-9)=0
=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2mx+y=1\\2x-\left(2m+1\right)y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\left(2m+1\right)y+y=1\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m^2y+my+y-1=0\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(2m^2+m+1\right)=1\left(1\right)\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)
Để pt có nghiệm duy nhất tức là pt (1) có nghiệm duy nhất
\(\Leftrightarrow2m^2+m+1\ne0\Leftrightarrow m^2+\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ne0\) ( luôn đúng )
Vậy với mọi giá trị m thỏa mãn là pt có nghiệm duy nhất.
a)Bạn chỉ cần bê 1/2 vào tìm m bình thường
b)nx-2+n=3x
\(\Leftrightarrow\left(m-3\right)x+m-2=0\)
Để pt có nghiệm duy nhất thì m-3 khác 0 suy ra m khác 0
Khi đó nghiệm duy nhất là x=-m+2/m-3
\(\left\{{}\begin{matrix}2x+3y+4=0\\3x+y-1=0\\2mx+5y-m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+3y=-4\\3x+y=1\\2mx+5y-m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+9y=-12\\6x+2y=2\\2mx+5y-m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7y=-14\\3x+y=1\\2mx+5y-m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\3x=1-y=1-\left(-2\right)=3\\2mx+5y-m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x=1\\2mx+5y-m=0\end{matrix}\right.\)
Để hệ phương trình này có duy nhất 1 nghiệm thì thay x=1 và y=-2 vào 2mx+5y-m=0, ta được:
2m*1+5*(-2)-m=0
=>m-10=0
=>m=10